DEUX PETITS PROBLÈMES SUR LES MATRICES

PROBLÈME 1:

NOTATIONS

 $\mathbb{M}_n(\mathbb{R})$ désigne l'algèbre des matrices carrées d'ordre n à coefficients réels (n entier ≥ 2). 0_n désigne la matrice nulle de $\mathbb{M}_n(\mathbb{R})$.

On identifiera une matrice $A \in \mathbb{M}_n(\mathbb{R})$ et l'endomorphisme de \mathbb{R}^n dont A est la matrice dans la base canonique de \mathbb{R}^n . (on se permettra ainsi d'écrire Ker(A) et Im(A)).

L'objet du problème est l'étude de certaines propriétés des groupes multiplicatifs de matrices de $\mathbb{M}_n(\mathbb{R})$: un tel groupe est un sous-ensemble G de $\mathbb{M}_n(\mathbb{R})$ qui a une structure de groupe pour la multiplication interne des matrices ; l'élément neutre de G sera noté E; le symétrique de $A \in G$ dans G sera noté A'. On a donc, pour tout $A \in G$: AE = EA = A et AA' = A'A = E.

On notera (cf 1ère partie) qu'un tel groupe n'est pas nécessairement un sous-groupe de $GL_n(\mathbb{R})$, et qu'une matrice A peut avoir un symétrique dans G sans être inversible dans $\mathbb{M}_n(\mathbb{R})$; de même, E n'est pas nécessairement la matrice identité.

PARTIE A

Soit P une matrice de projection (c'est-à-dire telle que $P^2 = P$).

- 1°) Montrer que l'ensemble $\{P\}$ forme un groupe multiplicatif de cardinal 1.
- **2°)** Montrer que, si $P \neq 0_n$, l'ensemble $\{-P,P\}$ forme un groupe multiplicatif de cardinal 2.

PARTIE B

- 1°) Soient $A, B \in \mathbb{M}_n(\mathbb{R})$, et C = AB. Montrer que $\operatorname{Ker}(B) \subset \operatorname{Ker}(C)$, et que $\operatorname{Im}(C) \subset \operatorname{Im}(A)$. Soit G un groupe multiplicatif de matrices de $\mathbb{M}_n(\mathbb{R})$, non réduit à $\{0_n\}$, et soit E son élément neutre.
- **2°)** Montrer que, pour tout $A \in G$, Ker(A) = Ker(E).
- **3°)** Montrer que, pour tout $A \in G$, Im(A) = Im(E).
- **4**°) Montrer que $\mathbb{R}^n = \operatorname{Im}(E) \oplus \operatorname{Ker}(E)$, et que E est un projecteur.

PARTIE C

Soient U et V deux sous-espaces vectoriels propres (i.e non triviaux) et supplémentaires de \mathbb{R}^n , de bases respectives (u_1, u_2, \dots, u_k) et (v_{k+1}, \dots, v_n) . Soit \mathcal{B} la base de \mathbb{R}^n telle que $\mathcal{B} = (u_1, \dots, u_k, v_{k+1}, \dots, v_n)$. Soit H l'ensemble des matrices A de $\mathbb{M}_n(\mathbb{R})$ telles que $\operatorname{Ker}(A) = V$ et $\operatorname{Im}(A) = U$.

 1°) Quelle est la matrice E dans la base \mathcal{B} de la projection sur U de direction V?

- 2°) Montrer que, pour tout $A \in H$, la matrice de A dans la base \mathcal{B} est de la forme : $\begin{bmatrix} A_1 & 0 \\ 0 & 0 \end{bmatrix}$, où A_1 est une matrice carrée d'ordre k inversible dans $\mathbb{M}_k(\mathbb{R})$.

 Montrer que, réciproquement, si la matrice de A dans la base \mathcal{B} est de cette forme, alors A appartient à H.
- 3°) Déduire des questions précédentes que H est un groupe multiplicatif de matrices, isomorphe à $GL_k(\mathbb{R})$.
- 4°) Soit $A \in \mathbb{M}_n(\mathbb{R})$. Démontrer que les cinq propriétés suivantes sont équivalentes :
 - a) A appartient à un groupe multiplicatif.
 - **b)** A et A^2 ont même rang.
 - c) A et A^2 ont la même image.
 - d) A et A^2 ont même noyau.
 - e) $\mathbb{R}^n = \operatorname{Ker}(A) \oplus \operatorname{Im}(A)$.

PARTIE D

- 1°) En utilisant les résultats des parties B et C, montrer que, si une matrice non nulle A appartient à deux groupes multiplicatifs de $\mathbb{M}_n(\mathbb{R})$, G_1 et G_2 , d'éléments neutres respectifs E_1 et E_2 , et que si A_1' et A_2' sont les symétriques respectifs de A dans G_1 et G_2 , alors: $E_1 = E_2$ et $A_1' = A_2'$.
- **2**°) Dans le cas n = 3, soit $A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 0 & 0 \end{pmatrix}$.

Montrer que A appartient à un groupe multiplicatif, et déterminer E et A'.

(D'après X, 1986, extrait)

PROBLÈME 2:

E désigne la \mathbb{R} -algèbre $\mathbb{M}_2(\mathbb{R})$ des matrices carrées d'ordre 2 à coefficients réels. On pose :

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} , M_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} , M_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} , M_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} ,$$
 et on rappelle que (M_1, M_2, M_3, M_4) est une base de E .

PARTIE A

Dans cette partie, F est un sous-espace vectoriel de E, de dimension 3, et stable pour la multiplication. On veut montrer: $I \in F$, et pour cela on raisonne par l'absurde en supposant $I \notin F$.

- 1°) Montrer que F et $\mathbb{R}I$ sont deux sous-espaces vectoriels supplémentaires de E (on rappelle que $\mathbb{R}I$ désigne la droite vectorielle engendrée par I, c'est-à-dire l'ensemble des matrices scalaires).
- 2°) On désigne alors par p la projection sur $\mathbb{R}I$ parallèlement à F.
 - a) Montrer que: $\forall (M,M') \in E^2$, p(MM') = p(M)p(M').

- b) En déduire que si M est un élément de E tel que $M^2 \in F$, alors M appartient à F.
- **3°)** Montrer que M_2 et M_3 appartiennent à F, ainsi que M_1 et M_4 .
- 4°) Conclure.

PARTIE B

Dans cette partie, on étudie certains endomorphismes de E. On désigne par $\mathcal{L}(E)$ l'ensemble des endomorphismes de E.

1°) A tout élément A de E, on associe l'application $\phi(A)$ de E dans E, définie par : $\forall M \in E , \phi(A)(M) = AM - MA.$

- a) Vérifier rapidement que, pour tout $A \in E$, $\phi(A)$ appartient à $\mathcal{L}(E)$.
- b) Montrer que l'application ϕ ainsi définie de E dans $\mathcal{L}(E)$, qui à $A \in E$ associe $\phi(A)$, est linéaire. Déterminer $\phi(\lambda I)(\lambda \in \mathbb{R})$.
- c) Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que $\phi(A) = 0$. Montrer que b = c = 0 et que a = d (on pourra utiliser les matrices M_i).
- d) Déduire du b et du c que $\mathrm{Ker}(\phi) = \mathbb{R}I$ et que $\mathrm{Im}(\phi)$ est un sous-espace vectoriel de $\mathcal{L}(E)$, de dimension 3.
- **2°)** On pose: $D = \{ u \in \mathcal{L}(E) / \forall (M,N) \in E^2, u(MN) = u(M)N + Mu(N) \}.$
 - a) Montrer que D est un sous-espace vectoriel de $\mathcal{L}(E)$.
 - **b)** Montrer que $\text{Im}(\phi)$ est incluse dans D.
- 3°) Soit u un élément de D.
 - a) Montrer que u(I) = 0.
 - **b)** Calculer le produit M_2M_2 ; en déduire qu'il existe deux réels x et y tels que $u(M_2) = \begin{pmatrix} x & y \\ 0 & -x \end{pmatrix}$. (on pourra poser $u(M_2) = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$.)
 - c) De même, montrer qu'il existe deux réels z et t tels que $u(M_3)=\begin{pmatrix} -t & 0 \\ z & t \end{pmatrix}$.
 - d) Montrer que: y + z = 0.
 - e) Soit alors $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ telle que $\begin{cases} a d = y = -z \\ c = -x \\ b = -t \end{cases}$.

Les réels x,y,z,t ayant été définis aux b et c ci-dessus, montrer que $\phi(A)=u$.

4°) En conclure: $Im(\phi) = D$.

(D'après INA, 1989, extrait)