Épreuve obligatoire 1/8

Liste des questions pouvant être liées :

(1, 2, 3, 4, 5, 6)

(7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

(21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32)

(33, 34, 35, 36, 37, 38, 39, 40)

Ce sujet comporte 40 questions, toutes obligatoires.

On considère la fonction numérique définie sur l'intervalle $\mathcal{I} =]-1,1[$ par

$$f(x) = \exp\left(\frac{1}{x^2-1}\right).$$

On note C la courbe représentative de f.

Question n° 01:

- a) f est de classe C^{∞} sur \mathcal{I} .
- b) f est une fonction paire.
- c) f est prolongeable par continuité en x = +1, mais pas en x = -1.
- d) f est prolongeable par continuité en x = -1, mais pas en x = +1.

Question n° 02:

Etude de la dérivabilité de f en x = +1.

a) Cette étude ne se pose pas car f n'est pas prolongeable en x = +1.

Dans le cas contraire, on note f ce prolongement et on pose $\tau = \frac{f(1) - f(1-h)}{h}$,

0 < h < 2. Alors $\lim_{h \to 0^+} \tau$

- b) n'existe pas ou est infinie.
- c) existe et a une valeur non nulle.
- d) La courbe C admet une tangente horizontale en x = +1 et en x = -1.

Question n° 03:

La dérivée f' de f sur \mathcal{I}

a) est positive ou nulle.

- b) admet un extremun et un seul.
- c) est strictement monotone sur [0, 1[.
- d) est prolongeable par continuité en x = 1 et x = -1.

Question n° 04:

La courbe C est

- a) concave sur au moins un intervalle inclus dans \mathcal{I} .
- b) convexe sur au plus un intervalle inclus dans I.

- $\mathcal C$ admet sur $\mathcal I$
- c) deux points d'inflexion.

d) trois points d'inflexion.

On considère la suite numérique
$$U=(U_n,\ n\geq 1)$$
 définie par $U_n=\frac{1}{n}\sum_{k=0}^{n-1}\exp\left(\frac{n^2}{k^2-n^2}\right)$.

Question n° 05:

336

U est une somme de Darboux-Riemann associée à la fonction f sur l'intervalle

a) [-1, 1].

b) [0, 1].

c) U est convergente.

d) U est alternée.

Question n° 06:

a) L'assertion c) de la question 05 est fausse.

Dans le cas contraire, il est possible d'exprimer $\lim_{n\to+\infty} U_n$ sous la forme

b)
$$\int_{-1}^{0} f(x) dx$$
.

c)
$$\int_0^1 f(x) dx.$$

d)
$$\int_{-1}^{1} f(x)dx.$$

On considère les fonctions de la variable réelle x, définies par

$$f(x) = \ln \left(x - 1 + \sqrt{x^2 - 2x}\right)$$
 et $g(x) = \frac{\operatorname{Argch}(x-1)}{\sqrt{x^2 - 2x}}$.

Dans le repère Oxy, on note \mathcal{F} (respectivement \mathcal{G}) la courbe représentative de f (respectivement g).

On rappelle que la fonction Argch est la fonction réciproque de la restriction de la fonction ch (cosinus hyperbolique) à $[0, +\infty[$.

On pose $I_1 =]-\infty$, $0[, I_2 =]0, 2[, I_3 =]2, +\infty[$ et $U = I_1 \cup I_2 \cup I_3$.

Question n° 07:

La fonction f est définie et continue sur

a)
$$[2, +\infty[$$

b) $I_1 \cup I_3$.

La fonction g est définie et continue sur

c)
$$I_3$$
.

d) $I_1 \cup I_3$.

Question n° 08:

Pour tout t > 1, il est possible d'écrire

a) Argch
$$t = \ln \left(t + \sqrt{t^2 + 1}\right)$$
.

b) Argch
$$t = \ln (t - \sqrt{t^2 - 1})$$
.

g peut s'exprimer, sur son ensemble de définition, sous la forme

c)
$$g(x) = \frac{\ln (x - 1 + \sqrt{x^2 - 2x})}{\sqrt{x^2 - 2x}}$$
.

d)
$$g(x) = -\frac{\ln (x - 1 - \sqrt{x^2 - 2x})}{\sqrt{x^2 - 2x}}$$
.

Question n° 09:

Pour x appartenant à voisinage de 2^+ , Argch (x-1) est équivalente à

a)
$$\sqrt{x-2}$$
.

b)
$$\sqrt{2}(x-2)$$
.

g est prolongeable par continuité en 2⁺ en posant

c)
$$g(2^+)=1$$
.

d)
$$g(2^+) = 0$$
.

Dans les deux questions suivantes, on pose t = x - 1 avec $x \in I_3$.

On considere pour t > 1, $u(t) = \operatorname{Argch} t - \frac{1}{t}\sqrt{t^2 - 1} = \operatorname{Arg}(x - 1) - \frac{\sqrt{x^2 - 2x}}{x - 1}$.

Question n° 10:

On note sgn $X = \begin{cases} + & \text{si} & X \ge 0 \\ - & \text{si} & X < 0 \end{cases}$.

a)
$$\operatorname{sgn} g'(x) = \operatorname{sgn} u(t)$$
.

b)
$$\operatorname{sgn} g'(x) = \operatorname{sgn} (-u(t)).$$

c)
$$u'(t) = \frac{1}{t^2 \sqrt{t^2 - 1}}$$
.

d)
$$u'(t) = -\frac{1}{t^2} \sqrt{t^2 - 1}$$
.

Question n° 11:

La fonction u est pour t > 1

a) décroissante.

b) croissante et bornée.

- g est dans I_3
- c) strictement décroissante.
- d) croissante.

Question n° 12:

Au voisinage de +∞

a)
$$g(x) \sim \frac{\ln 2}{x}$$
.

b)
$$g(x) \sim \frac{\ln x}{x}$$
.

 \mathcal{G} possède au voisinage de $x = +\infty$

- c) une branche parabolique d'axe Ox.
- d) une direction asymptotique.

On considère l'équation différentielle, d'inconnue y(x)

$$(x^2-2x) y' + (x-1) y = 0. (E)$$

Question n° 13:

Pour $x \in U$, les solutions de (E) différentes de la banale fonction nulle sont définies par $y = K \sqrt{|x(x-2)|}$, où K est une constante réelle arbitraire

a) indépendante de I3.

b) dépendante de I_1 .

Pour $x \in U$, les solutions de (E) différentes de la banale fonction nulle sont définies par $y = \frac{K}{\sqrt{|x(x-2)|}}$, où K est une constante réelle arbitraire

c) indépendante de I2.

d) dépendante de I₃.

On considère l'équation différentielle, d'inconnue y(x)

$$(x^2-2x) y' + (x-1) y = b,$$
 (E_b)

où b est un réel fixé non nul.

Question n° 14:

 $\forall b \in \mathbb{R}$, les solutions sur U de (E_b)

- a) forment un espace vectoriel réel de dimension 1.
- b) sont obtenues en ajoutant aux solutions de (E) une constante.
- c) g vérifie (E_b) sur I_3 pour b=1.
- d) g vérifie (E_b) sur I_1 pour b = -1.

On définit sur I_2 la fonction h par $h(x) = \frac{1}{\sqrt{x(2-x)}}$ et l'on considère la fonction Fdéfinie par l'intégrale

$$F(x) = \int_0^x h(t) dt.$$

Question n° 15:

F est définie sur

a) I_2 .

b) *U*.

- c) [0, 2].
- d) Ø.

Question n° 16:

Sur son ensemble \mathcal{E}_F de définition, F est

a) continue.

- b) non bornée.
- c) dérivable avec $F'(x) = h(x) \ \forall x \in \mathcal{E}_F$.
- d) dérivable uniquement sur $I_2\setminus\{1\}$.

Question n° 17:

Le changement de variable $\theta \sqrt{2} = \sqrt{t}$ donne pour F(x)

a)
$$\int_0^{\sqrt{2x}} \frac{d\theta}{\sqrt{1-\theta^2}}.$$

b)
$$\int_0^{\sqrt{\frac{z}{2}}} \frac{d\theta}{\sqrt{1-\theta^2}}.$$

Nous obtenons ainsi

c)
$$F(x) = Arcsin \sqrt{2x}$$
.

d)
$$F(x) = 2 \operatorname{Arcsin} \sqrt{\frac{x}{2}}$$
.

Question nº 18:

a)
$$g(x)$$
.

b)
$$\frac{\pi - F(x)}{\sqrt{x(2-x)}}$$
. c) $\frac{1+F(x)}{\sqrt{x(2-x)}}$. d) $F(x) + \pi$.

c)
$$\frac{1+F(x)}{\sqrt{x(2-x)}}$$

d)
$$F(x) + \pi$$

sont des solutions sur I_2 de l'équation différentielle (E_1) (Cas où b=1).

Question n°19:

On pose pour
$$x \in I_2$$
, $v(x) = \frac{\frac{\pi}{2} - Arcsin(x-1)}{\sqrt{2x-x^2}}$.

Arccos u est au voisinage de u = 1 équivalente à

a)
$$1 - u$$
.

b)
$$\sqrt{2}\sqrt{1-u}$$
.

Arcsin u est au voisinage de u = 1 équivalente à

c)
$$\frac{\pi}{2}-u$$
.

d)
$$\frac{\pi}{2} - \sqrt{2}\sqrt{1-u}$$
.

Question n° 20:

La limite de v(x) pour $x \to 2^-$ est

a) finie.

- b) nulle.
- c) v est l'unique solution de (E_1) sur I_2 .
- d) v est prolongeable par continuité sur IR.

On considère les fonctions u et f, de la variable réelle x, définies par

$$u(x) = \frac{1}{x} \ln [\operatorname{ch} x]$$
 et $f(x) = e^{u(x)}$.

On note C_u et C_f les courbes représentatives de u et f.

Épreuve obligatoire 5/8

Question n° 21;

- a) u est définie sur IR et donc f aussi.
- b) u n'est pas définie en x = 0 mais f est définie en x = 0.
- c) u est impaire et donc f est paire.
- d) u et f sont paires.

Question n° 22:

La fonction ch (cosinus hyperbolique) admet au point x = 0 un dl (développement limité) d'ordre 4, de la forme

$$\operatorname{ch} x = \alpha + \beta x + \gamma x^{2} + \delta x^{3} + \epsilon x^{4} + o(x^{4}).$$

- a) $\beta = \delta = 0$ car la fonction ch est impaire.
- b) Les dl de chx et de cosx à l'ordre 4 sont identiques.

c)
$$\alpha = 1$$
 et $\gamma = \frac{1}{2}$.

d)
$$\beta = \frac{1}{2}$$
 et $\epsilon = -\frac{1}{24}$.

Question n° 23:

La fonction u admet au point x = 0 un dl d'ordre 3, de la forme

$$u(x) = \alpha + \beta x + \gamma x^{2} + \delta x^{3} + o(x^{3}).$$

- a) $\beta = \delta = 0$ car la fonction u est paire. b) $\beta = \frac{1}{2}$ et $\gamma = 0$.
- c) L'existence de ce dl prouve que la fonction u est au moins de classe C^3 sur \mathbb{R} .
- d) L'existence de ce dl prouve que la fonction u est dérivable en x = 0.

Question n° 24:

a) Il est possible d'écrire pour $x \neq 0$

$$u(x) = 1 - \frac{\ln 2}{x} + \frac{1}{x} \ln (1 + e^{-2x}).$$

- u(x) admet pour $x \to +\infty$ une limite
- b) nulle.

- c) indéterminée.
- d) finie.

Question n° 25:

- a) La courbe C_u admet deux asymptotes donc une verticale.
- b) La courbe C_u admet au moins un point d'inflexion.
- c) La courbe C_f admet la droite d'équation d) La courbe C_f est convexe sur IR. $y = \frac{1}{\epsilon}$ pour asymptote.

Question n° 26:

La fonction u est dérivable sur \mathbb{R}^* et $u'(x) = \frac{Num(x)}{x^2}$.

- a) $Num(x) = x \text{ th } x + \ln[\text{ch } x].$
- b) $Num(x) = x \operatorname{sh} x \operatorname{ch} x \ln [\operatorname{ch} x].$
- c) Num(x) admet en x = 0 pour dl d'ordre 2 : $Num(x) = \frac{x^2}{2} + o(x^2)$.
- d) u n'étant pas dérivable en x = 0 alors la courbe C_u admet en ce point une tangente verticale.

Question n° 27:

- a) La fonction $Num : x \rightarrow Num(x)$ n'est pas dérivable sur \mathbb{R} .
- Si l'assertion ci-dessus est jugée inexacte alors
- b) Num'(0) = 0.
- c) Num est continue et bornée sur \mathbb{R} . d) $Num(x) > 0 \quad \forall x \ge 0$.

Question n° 28:

La fonction f admet au point x = 0 un dl d'ordre 2 de la forme

$$f(x) = \alpha + \beta x + \gamma x^{2} + o(x^{2}).$$

- a) α , β et γ sont tous non nuls car la fonction f n'est ni paire ni impaire.
- b) u admet un dl au point x = 0 à un ordre $n \in \mathbb{N}^{\bullet}$ quelconque et donc f admet aussi au point x = 0 un dl de même ordre n.

c)
$$\beta = \frac{1}{2}$$
 et $\gamma = 0$.

d)
$$\alpha = 1$$
 et $\gamma = \frac{1}{8}$.

Question n° 29:

Soit D la droite d'équation $y = \frac{x}{2} + 1$.

- a) D est tangente en x = 0 à la courbe C_f et coupe C_f en deux autres points.
- b) Il existe un voisinage v_0 de x = 0 tel que $\forall x \in v_0$ $f(x) \frac{x}{2} 1 \ge 0$.
- c) C_f admet un centre de symétrie.
- d) C_f admet une tangente verticale.

Question n° 30:

On note F la primitive de f nulle en x = 0.

- a) F n'existe pas car f n'est pas définie en x = 0.
- Si l'on accepte l'assertion a) ci-dessus alors on marquera obligatoirement e) à la question 31.

b)
$$F(x) = \int_0^x f(t) dt = \int_0^{\frac{1}{x}} f(t) dt$$
.

c) F est une fonction strictement d) F admet pour $x \to +\infty$ une limite croissante.

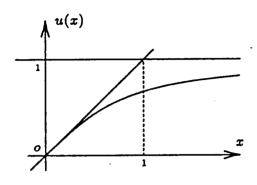
Question n° 31:

- a) $S_1 = \frac{1}{2} \sum_{k=1}^{4} f\left(\frac{k}{2}\right)$ est une valeur approchée de F(2) par la méthode des rectangles.
- b) $S_2 = \frac{1}{2} + \frac{1}{4} \sum_{k=1}^{3} f\left(\frac{k}{2}\right)$ n'est pas une valeur approchée de F(2) par la méthode des rectangles.
- c) $S_1 = 3,264 \text{ à } 10^{-3} \text{ près par défaut.}$ d) $S_2 = 2,792 \text{ à } 10^{-3} \text{ près par excès.}$

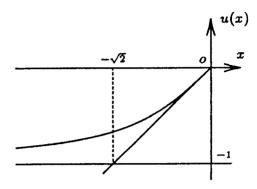
Épreuve obligatoire 7/8

Question n° 32:

a) C_u est représentée pour $x \geq 0$ par

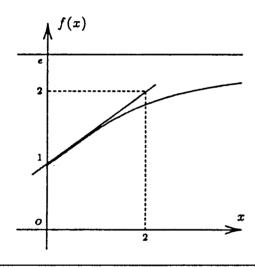


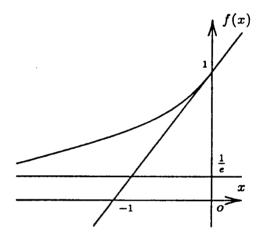
c) C_f est représentée pour $x \geq 0$ par



b) C_u est représentée pour $x \leq 0$ par

d) C_f est représentée pour $x \leq 0$ par





L'espace vectoriel réel \mathbb{R}^3 est rapporté à la base canonique $\mathcal{B}_0 = \left(\vec{i}, \, \vec{j}, \, \vec{k}\right)$. Soit l'endomorphisme φ de matrice dans \mathcal{B}_0

$$A = \begin{pmatrix} 4 & -2 & -3 \\ 2 & -1 & -2 \\ 4 & -2 & -3 \end{pmatrix}.$$

Question n° 33:

Le déterminant (Det A) de la matrice A est

- a) non nul car les deux premières colonnes sont proportionnelles.
- c) est nul car la première et la troisième ligne sont identiques.
- b) est nul car la somme des colonnes est (-1, -1, -1).
- d) est nul car la trace (Tr A) est nulle.

Question n° 34:

- a) A n'est pas inversible.
- c) A admet 0 pour valeur propre au moins double.
- b) $\overrightarrow{0}$ est un vecteur propre de φ .
- d) Tr A = 0 donc 0 est la seule valeur propre de A.

Question n° 35:

Soit le polynôme caractéristique $P(\lambda) = \text{Det}(A - \lambda I)$ où I est la matrice unité d'ordre 3. O désigne la matrice nulle d'ordre 3.

- a) P est un polynôme de degré 2, donc 0 est une valeur propre.
- b) $P(\lambda) = -\lambda^3 + \lambda \operatorname{Tr} A \operatorname{Det} A$.

c)
$$A^2 - I = 0$$
.

d)
$$A(A^2 - I) = 0$$
.

Question n° 36:

- a) A admet trois valeurs propres distinctes positives.
- c) Les sous espaces propres sont tous de dimension 1.
- b) A n'est pas diagonalisable parce que 1 est une valeur propre triple.
- d) A n'est pas diagonalisable parce que 0 est une valeur propre.

Question n° 37:

Soit la matrice
$$M = \begin{pmatrix} 4 & -2 & -3 & x \\ 2 & -1 & -2 & y \\ 4 & -2 & -3 & z \end{pmatrix} x$$
, y et z réels.

Il existe des opérations du type $L_i \leftarrow \lambda_i L_i + \sum_{i \neq j} \mu_j L_j$ où $\lambda_i \neq 0$ et $(i, j) \in \{1, 2, 3\}^2$, qui transforment M en

$$M' = \begin{pmatrix} 4 & -2 & -3 & x \\ 0 & \times & \times & \times \\ 0 & 0 & \times & \times \end{pmatrix} = (m'_{lk}).$$

où x désigne un réel quelconque, telles que

- a) $m'_{22} \neq 0$.
- b) m'_{34} est indépen- c) $m'_{33} = 1$.

Question n° 38:

La matrice
$$M'' = \begin{pmatrix} 4 & -2 & -3 & x \\ 0 & 0 & 1 & x - 2y \\ 0 & 0 & 0 & x - z \end{pmatrix}$$
 est obtenue par transformation de M à

l'aide des opérations successives (dans l'ordre)

- a) $L_3 \leftarrow -L_3 + L_1$ puis $L_2 \leftarrow -2L_2 + L_1$. b) $L_2 \leftarrow -2L_1 + L_2$ puis $L_3 \leftarrow -L_1 + L_3$.
- c) $L_2 \leftarrow -2 L_2 + L_1$ puis $L_3 \leftarrow -L_3 + L_1$. d) $L_3 \leftarrow -L_1 + L_3$ puis $L_2 \leftarrow -2 L_1 + L_2$.

Question n° 39:

- a) Im φ est de dimension 2.
- b) x + z = 0 est une équation de Im φ .

 $\operatorname{Ker}\,\varphi=\operatorname{I\!R}\vec{v}\,\operatorname{avec}$

c) $\vec{v} = \vec{i} - \vec{k}$.

d) $\vec{v} = \vec{i} + 2\vec{j}$.

Question n° 40:

On considère la famille
$$\mathcal{B} = \left(\vec{I}, \vec{J}, \vec{K}\right)$$
 définie par
$$\left\{\begin{array}{cccc} \vec{I} & = & \vec{i} & + & \vec{j} & + & \vec{k} \\ \vec{J} & = & \vec{i} & + & 2\vec{j} & \\ \vec{K} & = & \vec{i} & & + & \vec{k} \end{array}\right.$$

- a) \mathcal{B} est une base de \mathbb{R}^3 car elle est b) La matrice de passage de \mathcal{B}_0 à \mathcal{B} est formée de vecteurs propres de φ .
 - inversible car son déterminant vaut 1.

Soit le sous espace $\mathcal E$ de $\mathbb R^3$ engendré par la famille $\mathcal F=\left(\vec I,\, \vec K\right)$.

c) \mathcal{E} est stable par φ .

d) La restriction de φ à \mathcal{E} est une involution.