ÉCOLE NATIONALE DE L'AVIATION CIVILE

Session 2011

CONCOURS DE RECRUTEMENT D'ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE

♦

Épreuve commune obligatoire de MATHÉMATIQUES

Durée : 4 heures

Coefficient: 2

•

Ce sujet comporte:

4 pages de garde, d'instructions/QCM et d'avertissements recto/verso 14 pages de texte recto/verso

♦

CALCULATRICE NON AUTORISÉE

ÉPREUVE COMMUNE OBLIGATOIRE DE MATHÉMATIQUES

A LIRE TRÈS ATTENTIVEMENT

L'épreuve «commune obligatoire de mathématiques» de ce concours est un questionnaire à choix multiple qui sera corrigé automatiquement par une machine à lecture optique.

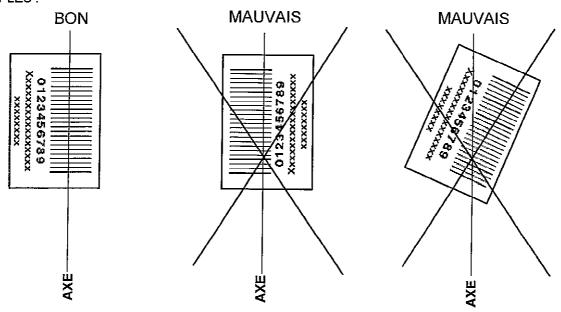
ATTENTION, IL NE VOUS EST DÉLIVRÉ QU'UN SEUL QCM

1) Vous devez coller dans la partie droite prévue à cet effet, **l'étiquette correspondant à l'épreuve que vous passez**, c'est-à-dire épreuve obligatoire de mathématiques (voir modèle ci-dessous).

POSITIONNEMENT DES ÉTIQUETTES

Pour permettre la lecture optique de l'étiquette, le trait vertical matérialisant l'axe de lecture du code à barres (en haut à droite de votre QCM) doit traverser la totalité des barres de ce code.

EXEMPLES:



- 2) Pour remplir ce QCM, vous devez utiliser un STYLO BILLE ou une POINTE FEUTRE de couleur NOIRE.
- 3) Utilisez le sujet comme brouillon (ou les brouillons qui vous sont fournis à la demande par le surveillant qui s'occupe de votre rangée) et ne retranscrivez vos réponses qu'après vous être relu soigneusement.
- 4) Votre QCM ne doit pas être souillé, froissé, plié, écorné ou porter des inscriptions superflues, sous peine d'être rejeté par la machine et de ne pas être corrigé.

- Cette épreuve comporte 40 questions obligatoires; certaines, de numéros consécutifs, peuvent être liées. La liste de ces questions est donnée au début du texte du sujet.
 Chaque question comporte, au plus, deux réponses exactes.
- 6) A chaque question numérotée entre 1 et 40, correspond sur la feuille-réponses une ligne de cases qui porte le même numéro (les lignes de 41 à 100 seront neutralisées). Chaque ligne comporte 5 cases A, B, C, D, E.

Pour chaque ligne numérotée de 01 à 40, vous vous trouvez en face de 4 possibilités :

- ▶ soit vous décidez de ne pas traiter cette question, la ligne correspondante doit rester vierge.
- ▶ soit vous jugez que la question comporte une seule bonne réponse : vous devez noircir l'une des cases A, B, C, D.
- ➤ soit vous jugez que la question comporte deux réponses exactes : vous devez noircir deux des cases A, B, C, D et deux seulement.
- ▶ soit vous jugez qu'aucune des réponses proposées A, B, C, D n'est bonne : vous devez alors noircir la case E.

Attention, toute réponse fausse entraîne pour la question correspondante une pénalité dans la note.

7) EXEMPLES DE RÉPONSES

Question 1: $1^2 + 2^2$ vaut:

A) 3 B) 5 C) 4 D) -1

Question 2: le produit (-1) (-3) vaut :

. le produit (-1) (-5) vaut

A) -3 B) -1 C) 4 D) 0

Question 3: Une racine de l'équation $x^2 - 1 = 0$ est :

A) 1 B) 0 C) -1 D) 2

Vous marquerez sur la feuille réponse :

1	A	В	C	D	E
2	A	B D	C	D	E
3	A	В	C	D	E

AVERTISSEMENTS

L'usage de calculatrices, téléphones portables ou de documents personnels n'est pas autorisé.

QUESTIONS LIÉES

1 à 21 22 à 32 33 à 40

PARTIE I

r désigne un entier naturel supérieur ou égal à 2 et IN_r désigne l'ensemble des entiers naturels compris entre 1 et r, enfin $\mathfrak{M}_r(IR)$ désigne l'ensemble des matrices carrées d'ordre r à coefficients réels. I_r est la matrice unité de $\mathfrak{M}_r(IR)$.

On dit qu'une matrice M de $\mathfrak{N}_r(IR)$ de coefficients m_{ij} est à diagonale strictement dominante si et seulement si pour tout i appartenant à $IN_r \operatorname{Im}_{ii} \operatorname{II} > \sum_{j \neq i} \operatorname{Im}_{ij} \operatorname{II}$ où II désigne la valeur absolue.

Une matrice A de $\mathfrak{M}_r(IR)$ de coefficients a_{ij} est dite stochastique si elle vérifie les deux conditions :

- pour tout couple (i,j) d'entiers de IN_r , a_{ij} appartient à l'intervalle [0,1]
- -- pour tout entier naturel i de IN_r , la somme de tous les coefficients de la ligne i est égale à 1.

Si, de plus, les coefficients de A sont tous non nuls, la matrice est dite stochastique stricte.

On note S_r l'ensemble des matrices stochastiques de $\mathfrak{M}_r(IR)$ et S_r^* celui des matrices stochastiques strictes.

On note, pour tout n entier naturel non nul, $a_{ij}^{(n)}$ les coefficients de la matrice A^n . On dira que la suite de terme général la matrice A^n converge et a pour limite, lorsque n tend vers $+\infty$, la matrice A^{∞} de coefficients a_{ij}^{∞} , si pour tout couple (i,j) d'entiers de IN_r la suite $(a_{ij}^{(n)})$ est convergente et a pour limite, quand n tend vers $+\infty$, le réel a_{ij}^{∞} .

1) L'ensemble δ_2

- A) est stable pour l'addition des matrices
- B) est stable pour le produit matriciel
- C) est stable pour la multiplication par un scalaire réel
- D) n'est pas stable pour la produit matriciel

On considère la matrice A de
$$\mathfrak{M}_2(IR)$$
 définie par A =
$$\begin{pmatrix} 1/3 & 2/3 \\ & & \\ 1/2 & 1/2 \end{pmatrix}$$

2) La matrice A

- A) appartient à δ_2^*
- B) n'appartient pas à S_2
- C) vérifie $A^2 = (5/6)A + (1/6)I_2$
- D) vérifie $A^2 = (1/6)A + (5/6)I_2$

- 3) Pour tout *n* entier naturel non nul
 - A) il existe 2 suites de réels (a_n) et (b_n) telles que $A^n = a_n A + b_n I_2$ et $a_{n+1} = a_n + (5/6)b_n$ et $b_{n+1} = (1/6)a_n$
 - B) il existe 2 suites de réels (a_n) et (b_n) telles que $A^n = a_nI_2 + b_nA$ et $a_{n+1} = b_n + (5/6)a_n$ et $b_{n+1} = (1/6)a_n$
 - C) il existe une suite de réels (a_n) telles que $A^n = a_n A$
 - D) il existe plusieurs suites de réels (a_n) et plusieurs suites de réels (b_n) telles que $A^n = a_n A + b_n I_2$ et $a_{n+1} = (5/6)a_n + b_n$ et $b_{n+1} = (1/6)a_n$
- 4) S'il existe des suites de réels (a_n) et (b_n) telles que, pour tout entier naturel non nul n, $A^n = a_n A + b_n I_2$, alors
 - A) la suite (a_n+b_n) est constante de valeur 1
 - B) la suite (a_n+b_n) n'est pas constante
 - C) les suites (a_n) et (b_n) vérifient pour tout entier naturel non nul n, $a_{n+1} = (-a_n + 1)/6$ et $b_{n+1} = 1 (b_n/6)$
 - D) les suites (a_n) et (b_n) vérifient pour tout entier naturel non nul n, $a_{n+1}=1-(a_n/6)$ et $b_{n+1}=(-b_n+1)/6$
- 5) Reprenant les notations et les hypothèses de la question 4,
 - A) il n'existe pas de réel l tel que la suite (a_n-l) soit une suite géométrique
 - B) on peut établir l'existence d'un réel l tel que (a_n+l) soit une suite géométrique convergente de raison 1/6
 - C) pour tout entier naturel non nul n, $a_n = (1/7)(1-(-1/6)^{n-1})$ et $b_n = (1/7)(6+(-1/6)^{n-1})$
 - D) pour tout entier naturel non nul n, $b_n = (1/7)(1-(-1/6)^{n-1})$ et $a_n = (1/7)(6+(-1/6)^{n-1})$
- 6) Toujours sous les hypothèses et les notations de la question 4
 - A) on ne peut pas conclure à la convergence de la suite de terme général A"
 - B) la suite de terme général Aⁿ converge et sa limite appartient au complémentaire de S_2^* dans S_2
 - C) la suite de terme général A^n converge vers une matrice de S_2^*
 - D) les coefficients a_{ij}^{∞} de la limite de la suite de terme général A" vérifient $a_{11}^{\infty} = a_{21}^{\infty} = 3/7$ et $a_{12}^{\infty} = a_{22}^{\infty} = 4/7$

On considère la matrice B de
$$\mathfrak{M}_3(IR)$$
 définie par B = $\begin{pmatrix} 2/3 & 1/3 & 0 \\ 3/7 & 4/7 & 0 \\ 2/9 & 1/3 & 4/9 \end{pmatrix}$

On note $\chi_B = \det(B - \lambda I_3)$ le polynôme caractéristique de la matrice B

7) La matrice B

- A) est diagonalisable comme matrice triangulaire supérieure dont les coefficients diagonaux sont tous distincts
- B) est diagonalisable car une matrice est diagonalisable si et seulement si son polynôme caractéristique est scindé à racines simples
- C) appartient à S_3 et a pour polynôme caractéristique $\chi_B = (\lambda 1)(\lambda (5/21))((4/9) \lambda)$ en développant le déterminant suivant la dernière colonne
- D) est diagonalisable car il existe un polynôme annulateur de la matrice B scindé à racines simples

On note
$$\lambda_1$$
, λ_2 , λ_3 les valeurs propres de la matrice B telles que $\lambda_1 \le \lambda_2 \le \lambda_3$ et on considère la matrice D = $\begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$

8) Le sous-espace propre de B

- A) associé à la valeur propre λ_1 est la droite vectorielle dont une base est le vecteur (1,1,1)
- B) associé à la valeur propre λ_2 est la droite vectorielle dont une base est le vecteur (0,1,0)
- C) associé à la valeur propre λ_3 est la droite vectorielle dont une base est le vecteur (7,-9,7)
- D) associé à la valeur propre λ_1 est la droite vectorielle dont une base est le vecteur (1,-1,1)

- 9) On montre que
 - A) il existe plusieurs matrices P telles que B = PDP⁻¹ et P⁻¹ = $\begin{pmatrix} 1 & -1 & 0 \\ -16 & 0 & 16 \\ 9 & 7 & 0 \end{pmatrix}$
 - B) il existe une matrice P telle que B = PDP⁻¹ et P⁻¹= (1/16) $\begin{pmatrix} 1 & -1 & 0 \\ -16 & 0 & 16 \\ 9 & 7 & 0 \end{pmatrix}$
 - C) il existe une matrice P telle que B = P⁻¹DP et P⁻¹ = (1/16) $\begin{pmatrix} 1 & -1 & 0 \\ -16 & 0 & 16 \\ 9 & 7 & 0 \end{pmatrix}$
 - D) il existe une seule matrice $P = \begin{pmatrix} 7 & 0 & 1 \\ -9 & 0 & -1 \\ 7 & 1 & 1 \end{pmatrix}$ telle que $B = PDP^{-1}$
- 10) La suite de terme général Bⁿ
 - A) est définie par Bⁿ= (1/16) $9(-(5/21)^n+9$ $7(-(5/21)^n+1)$ 0 $9(5/21)^n+7$ 0 pour tout n entier naturel non nul $7(5/21)^n+9-16(4/9)^n$ $7(-(5/21)^n+1)$ $16(4/9)^n$
 - B) est définie par Bⁿ= (1/16) $9(-(5/21)^n+9$ $7(-(5/21)^n+1)$ 0 pour tout n entier naturel non nul $7(5/21)^n+9-16(4/9)^n$ $7((5/21)^n+1)$ $16(4/9)^n$
 - C) converge vers une matrice de \mathbb{S}_3^* car les suites géométriques $(5/21)^n$ et $(4/9)^n$ convergent vers 0
 - D) est une suite d'éléments de S_3 , convergente et de limite la matrice (1/16) $\begin{pmatrix} 9 & 7 & 0 \\ 9 & 7 & 0 \\ 9 & 7 & 0 \end{pmatrix}$

On considère les matrices C et J de
$$\mathfrak{M}_3(IR)$$
 définies par $C = \begin{pmatrix} 1/2 & 1/2 & 0 \\ 0 & 1/2 & 1/2 \\ 0 & 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

11) La matrice C

- A) est triangulaire inférieure et inversible car ses coefficients diagonaux sont tous non nuls
- B) admet une valeur propre double 1/2 et une valeur propre simple 1 donc n'est pas diagonalisable car pour qu'une matrice soit diagonalisable il est nécessaire que toutes ses valeurs soient de multiplicité 1
- C) est diagonalisable car toute matrice dont le spectre ne contient pas la valeur 0 est diagonalisable
- D) est diagonalisable car le polynôme (X-1)(X-1/2), à racines simples, est un polynôme annulateur de la matrice C

12) On établit que

- A) la matrice J est nilpotente
- B) la suite de terme général Jⁿ est stationnaire car Jⁿ = $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ pour tout entier naturel non nul n
- C) $C^n = (1/2^n)(I_3 + nJ + 2^n J^2 J^2 n J^2)$ pour tout entier naturel non nul n
- D) $C^n = (1/2^n)(I_3 + nJ + n(n-1)J^2)$ pour tout entier naturel n strictement supérieur à 1

13) La suite de terme général Cⁿ

- A) est une suite convergente de limite n'appartenant pas à S₃
- B) est une suite d'éléments de S_3 , convergente et de limite la matrice de S_3 $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
- C) est définie par $C^n = (1/2^n) \begin{pmatrix} 1 & n & 2^n n 1 \\ 0 & 1 & 2^n 1 \\ 0 & 0 & 2^n \end{pmatrix}$ pour tout n entier naturel non nul
- D) ne converge pas car la suite de terme général $n/(2^n)$ diverge

- 14) On a
 - A) S_r est un sous-espace vectoriel de l'espace réel $\mathfrak{M}_r(\mathbb{R})$
 - B) δ_r n'est pas un sous-espace vectoriel mais est stable pour le produit matriciel
 - C) S_r est un sous-anneau de l'anneau $\mathfrak{M}_r(IR)$
 - D) S_r n'est pas un sous anneau de $\mathfrak{M}_r(IR)$ car S_r n'est pas un sous-groupe pour l'addition puisqu'il ne contient pas la matrice nulle
- 15) Soit A une matrice de l'ensemble 5,
 - A) le spectre de A contient 1 car le vecteur dont toutes les composantes sont égales à 1 est un vecteur propre associé à 1
 - B) 1 n'est pas valcur propre de A car le polynôme caractéristique de A n'est pas divisible par le polynôme (X-1)
 - C) pour tout *n* entier naturel la matrice Aⁿ appartient à l'ensemble S_r^*
 - D) la matrice A^n , n étant un entier naturel, n'appartient pas nécessairement à l'ensemble S_r
- 16) Soit A une matrice de l'ensemble S_r , si l'on suppose que la suite de terme général A^n converge, sa limite A^{∞}
 - A) n'appartient pas nécessairement à S_r
 - B) est une matrice stochastique
 - C) commute avec la matrice A pour le produit matriciel et vérifie A $A^{\alpha} = A^{\alpha}$
 - D) ne commute pas avec la matrice A pour le produit matriciel
- 17) Soit M une matrice de $\mathfrak{M}_r(IR)$, de coefficients m_{ij} , à diagonale strictement dominante. La matrice M
 - A) est inversible car sinon il existerait une matrice X non nulle de l'ensemble $\mathfrak{N}_{r,1}(IR)$ des matrices à r lignes et 1 colonne à coefficients réels solution du système homogène de matrice M, ce qui contredirait l'hypothèse sur M.
 - B) n'est pas inversible
 - C) est diagonalisable
 - D) n'est ni diagonalisable ni inversible

- 18) Soit A une matrice de l'ensemble S_r^* . On note B la matrice $B = A I_r$ et C_1 la matrice obtenue en supprimant la dernière ligne et la dernière colonne de B. On établit que
 - A) la matrice C_1 est une matrice de $\mathfrak{N}_r(IR)$ à diagonale strictement dominante
 - B) la matrice C_1 appartient à $\mathfrak{M}_{r-1}(IR)$ mais n'est pas à diagonale strictement dominante
 - C) le sous-espace propre de A associé à la valeur propre 1 est une droite car le rang de la matrice B vaut r-1
 - D) le sous-espace propre de A associé à la valeur propre 1 est un plan car le rang de la matrice B vaut r-2
- 19) On considère toujours une matrice A de l'ensemble S_r^* de coefficients a_{ij} et on note λ une valeur propre de A. On a
 - A) le point d'affixe λ est à l'intérieur du cercle de rayon $(1-a_{ii})$ et de centre le point d'affixe a_{ii} appartenant à l'intervalle [0,1[car la matrice $(A-\lambda I_r)$ n'est pas à diagonale strictement dominante puisqu'elle n'est pas inversible
 - B) la matrice (A-λI_r) est à diagonale strictement dominante
 - C) les valeurs propres de A sont de module strictement supérieur à 1
 - D) les valeurs propres de A distinctes de 1 sont toutes de module strictement inférieur à 1 car $\|\lambda a_{ii}\| \le 1 a_{ii}$ pour tout i appartenant à IN_r où II désigne le module.
- 20) On considère dans cette question une matrice A de l'ensemble S_r de coefficients a_{ij} et on note λ une valeur propre de A. On a
 - A) les valeurs propres de A sont de module supérieur ou égal à 1
 - B) les valeurs propres de A sont toutes de module strictement inférieur à 1
 - C) le déterminant de A est inférieur ou égal à 1 car le déterminant est le produit des valeurs propres de A
 - D) le déterminant de A est supérieur ou égal à 1

21) Soit M une matrice de $\mathfrak{M}_r(IR)$, de coefficients m_{ij} tels que :

pour tout couple (i,j) d'entiers de IN_r , m_{ij} appartient à l'intervalle]0,1[et pour tout entier naturel i de IN_r , la somme de tous les coefficients de la ligne i est inférieure ou égale à 1.

Désignant par det M le déterminant de la matrice M, on établit

- A) par récurrence, que ldet MI est supérieur ou égal à 1
- B) par récurrence, que l'det Ml < 1 car l'det Ml est strictement inférieur à la somme de tous les coefficients m_{l'} de la première ligne de la matrice M
- C) la valeur absolue du déterminant de toute matrice stochastique stricte est strictement inférieure à 1
- D) la valeur absolue du déterminant de toute matrice stochastique stricte est supérieure ou égal à 1

PARTIE II

On considère la fonction g définie sur IR^2 par $g(x,t) = (\exp(-x^2(1+t^2)))/(1+t^2)$ et la fonction h définie sur IR par $h(t) = \exp(-t^2)$ où exp désigne la fonction exponentielle

22) On établit que

- A)la fonction g est de classe C¹ sur IR² comme quotient de fonctions de classe C¹ sur IR² dont la fonction dénominateur ne s'annule jamais sur IR²
- B) pour tout x réel, la fonction qui à t associe g(x,t) est intégrable sur le segment [0,1], car continue et positive sur ce segment mais n'est pas intégrable sur IR
- C) la fonction h est intégrable sur IR car toute fonction positive et continue sur un intervalle ouvert I est intégrable sur cet intervalle
- D) la fonction h est intégrable sur $[0,+\infty[$ car toute fonction positive, continue sur $[0,+\infty[$ ayant une limite nulle lorsque t tend vers $+\infty$ est intégrable sur $[0,+\infty[$

On note G et H les fonctions, si elles existent, définies sur IR respectivement par

$$G(x) = \int_0^1 g(x,t)dt$$
 et $H(x) = (\int_0^x h(t)dt)^2$

23) On montre que

- A)la fonction G est continue mais n'est pas dérivable sur IR
- B) la fonction G est de classe C¹ sur IR et a pour dérivée

G'(x) =
$$\int_0^1 2x \exp((-x^2(1+t^2))dt$$

car la fonction qui à (x,t) associe $2x \exp((-x^2(1+t^2)))$ est bornée sur IRx[0,1]

- C) la fonction H est de classe C¹ sur [0,+∞[mais n'est pas dérivable sur IR
- D) la fonction H est dérivable sur IR et a pour dérivée H'(x) = h(x) pour tout x réel

24) On établit que les fonctions G et H vérifient

- A) pour tout x réel, H'(x) = G'(x), en introduisant le changement de variable bijectif de classe C^1 t = ux, et par conséquent la fonction G-H est constante sur IR
- B) la fonction G+H est constante sur IR car pour tout x réel H'(x) = -G'(x),
- C) pour tout x réel $G(x)+H(x)=G(0)=\arctan 1=\pi/4$ car arctant est une primitive de la fonction $1/(1+t^2)$
- D)pour tout x réel G(x)- $H(x) = G(0) = \arctan 1 = \pi/4$ car arctant est une primitive de la fonction $1/(1+t^2)$

25) On montre que

- A) la fonction G tend vers $\pi/4$ quand x tend vers $+\infty$
- B) la fonction G tend vers 0 quand x tend vers $+\infty$ car pour tout x réel $G(x) \le \exp(-x^2)$
- C) la fonction H tend vers 0 quand x tend vers $+\infty$ et par conséquent la fonction positive h est intégrable sur $[0, +\infty[$
- D) la fonction H tend vers $\pi/4$ quand x tend vers $+\infty$ et par conséquent la fonction positive h est intégrable sur $[0, +\infty[$ et l'intégrale de h sur l'intervalle $[0, +\infty[$ vaut $\sqrt[4]{\pi}/2$

On désigne par f une fonction à valeurs complexes continue et intégrable sur IR et on note l la fonction qui au couple (x,t) de réels associe le complexe $l(x,t) = f(t)\exp(-2i\pi xt)$

26) On montre que la fonction

- A) qui à x associe l(x,t) est intégrable sur IR pour tout t réel
- B) qui à t associe l(x,t) est intégrable sur IR pour tout x réel car cette fonction est, pour tout x réel, continue et de module borné sur IR
- C) qui à t associe l(x,t) est intégrable sur IR pour tout x réel car cette fonction est, pour tout x réel, le produit de deux fonctions intégrables sur IR
- D) qui à t associe l(x,t) n'est pas intégrable sur IR pour au moins un réel x

On note F la fonction à valeurs complexes qui à x réel associe, lorsqu'elle existe, l'intégrale

$$F(x) = \int_{-\infty}^{+\infty} l(x,t)dt$$

27) La fonction F

- A) n'est définie que sur l'intervalle $[0, +\infty[$
- B) est définie, bornée et continue sur IR puisque la fonction l est continue sur IR^2 et dominée sur IR^2 par la fonction, indépendante de x, f(t) positive, continue par morceau et intégrable sur IR
- C) est définie mais n'est pas continue sur IR
- D) est définie et continue sur IR puisque F est bornée par $\int_{-\infty}^{\infty} \mathbf{I} f(t) \mathbf{I} dt$ sur IR et que

toute fonction bornée sur un intervalle I est continue sur cet intervalle

28) On suppose dans cette question et les suivantes et dans ces cinq questions seulement, que $f(t)=1/(1+t^2)$. On a donc, si elle existe,

$$F(x) = \int_{-\infty}^{+\infty} (\exp(-2i\pi xt))/(1+t^2)dt$$

On établit

- A) par une intégration par parties que $\pi x F(x) = i \int_{-\infty}^{+\infty} t(\exp(-2i\pi xt))/(1+t^2)^2 dt$ pour tout x réel
- B) par une intégration par parties que $\pi x F(x) = -i \int_{-\infty}^{+\infty} t(\exp(-2i\pi xt))/(1+t^2)^2 dt$ pour tout x réel
- C) que $\mathbb{I}F(x)\mathbb{I} \le 1/(\pi \mathbb{I}x\mathbb{I})$ pour tout x réel
- D) que F(x) tend vers 0 quand x tend vers $+\infty$ ou vers $-\infty$
- 29) On note F₁ la fonction qui à x réel associe, lorsqu'elle existe, l'intégrale

$$F_1(x) = \int_{-\infty}^{+\infty} t(\exp(-2i\pi xt))(f(t))^2 dt.$$
 On montre que la fonction F_1

- A)n'est définie que sur l'intervalle [0, +∞[
- B) est définie et bornée par 1 mais n'est pas continue sur IR
- C) est définie, bornée par 1 et continue sur IR puisque la fonction $t(f(t))^2 \exp(-2i\pi xt)$ est continue sur IR² et dominée sur IR² par la fonction, indépendante de x, $\|t\|(f(t))^2$ positive, continue par morceau et intégrable sur IR
- D) est définie sur IR et continue sur IR* mais n'est pas continue en 0
- 30) On établit que
 - A) la fonction F₁ est de classe C¹ sur IR* mais sa dérivée n'est pas continue en 0
 - B) la fonction F_1 n'est de classe C^1 que sur]0, $+\infty \lbrack$
 - C) la fonction F est de classe C¹ sur IR et vérifie l'équation

$$F(x) - x F'(x) = 2 \int_{-\infty}^{+\infty} (f(t))^2 \exp(-2i\pi xt) dt \text{ pour tout } x \text{ réel}$$

D) la fonction F est de classe C^I sur IR* et vérifie l'équation

$$F(x) + x F'(x) = -2 \int_{-\infty}^{+\infty} (f(t))^2 \exp(-2i\pi xt) dt \text{ pour tout } x \text{ réel non nul}$$

- 31) On en déduit que la fonction F
 - A) est de classe C² sur IR
 - B) est de classe C² sur IR*
 - C) vérifie sur IR* l'équation différentielle F''- $4\pi^2$ F = 0
 - D) vérifie sur IR l'équation différentielle F''+ $4\pi^2$ F = 0
- 32) e désignant la fonction exponentielle, on établit que
 - A) la solution générale de l'équation différentielle du second ordre vérifiée par F est définie par $F(x) = A e^{-2\pi x} + B e^{2\pi x}$ pour tout x réel où A et B sont deux constantes
 - B) la solution générale de l'équation différentielle du second ordre vérifiée par F est définie sur $]0,+\infty[$ par $F(x) = A_1 e^{-2i\pi x} + B_1 e^{2i\pi x}$

et sur]-
$$\infty$$
,0[par F(x) = A₂ e^{-2i\pi x} + B₂ e^{2i\pi x} où A₁, A₂, B₁, B₂ sont des constantes

- C) la fonction F est définie par $F(x) = \pi e^{-2\pi x}$ pour tout x réel
- D) la fonction F est définie sur $]0,+\infty[$ par $F(x) = \pi e^{-2\pi x}$

et sur
$$]-\infty,0[$$
 par $F(x) = \pi e^{2\pi x}$

car la fonction F est de limite nulle à l'infini, continue et de valeur π en 0

PARTIE III

n désigne un entier naturel, ln désigne la fonction logarithme népérien et e désigne la fonction exponentielle.

On considère la suite (u_n) définie par

$$u_n = (\sum_{k=1}^n 1/k) - \ln(n)$$

pour tout n entier naturel non nul

Pour x réel strictement positif, on considère l'application g_x définie par $g_x(t) = (\ln(t))/(t^x)$ pour tout t appartenant à l'intervalle $I=]0,+\infty[$

- 33) On établit, en utilisant les notations de Landau, que
 - A) $u_{n+1} u_n = (1/(2n^2)) + o(1/n^2)$
 - B) $u_{n+1} u_n = (-1/(2n^2)) + o(1/n^2)$
 - C) la suite (u_n) converge car elle est de même nature que la série de terme général $(u_{n+1} - u_n)$ dont on montre la convergence, par application du critère des équivalents, comme série à termes positifs à partir d'un certain rang
 - D) la suite (u_n) diverge

- 34) La fonction g_x
 - A) est dérivable sur I et sa dérivée est définie par $g_x'(t) = 1/t^{x+1}$ pour tout t appartenant à I
 - B) est dérivable sur I et sa dérivée est définie par $g_x'(t) = (1-x\ln(t))/t^{x+1}$ pour tout t appartenant à I
 - C) est croissante sur I
 - D) est croissante sur $[0,e^{1/x}]$ et décroissante sur $[e^{1/x},+\infty[$
- 35) On pose, pour tout n entier naturel non nul $r_n = (\ln n)/n$. On déduit de la question précédente que

A) pour tout entier *n* supérieur ou égal à 4,
$$\int_{n}^{n+1} g_1(t)dt \le r_n \le \int_{n-1}^{n} g_1(t)dt$$

B) pour tout entier *n* supérieur ou égal à 4,
$$\int_{n-1}^{n} g_1(t)dt \le r_n \le \int_{n}^{n+1} g_1(t)dt$$

C) pour tout entier *n* supérieur ou égal à 4 on a $r_n \le ((\ln n)^2 - (\ln(n-1))^2)/2$ et pour tout entier *n* supérieur ou égal à 3 on a $((\ln(n+1))^2 - (\ln n)^2)/2 \le r_n$

D) pour tout entier
$$n$$
 supérieur ou égal à 4 on a $((\ln n)^2 - (\ln (n-1))^2)/2 \le r_n \le ((\ln (n+1))^2 - (\ln n)^2)/2$

- 36) La série de terme général $(-1)^n r_n$, n entier naturel non nul
 - A) est divergente
 - B) est une série alternée absolument convergente
 - C) est, d'après le critère spécial des séries alternées, convergente car la suite (r_n) est à termes positifs, décroissante à partir du rang 3 et de limite nulle
 - D) n'est pas absolument convergente car pour tout n entier supérieur ou égal à 3, r_n est minoré par 1/n, terme général d'une série positive divergente

37) Pour n, entier naturel non nul, on considère les fonctions v_n et w_n définies sur l'intervalle $J = [1,+\infty[$ respectivement par

Fintervalle
$$J = [1, +\infty[$$
 respectivement par $v_n(x) = (1/n^x) - (1/(n+1)^x)$ et $w_n(x) = (1/n^x) - \int_{n}^{n+1} (1/t^x) dt$. On a

- A) pour tout entier n supérieur ou égal 3, la dérivée v_n 'de v_n est négative sur J car la fonction g_x décroit sur l'intervalle $[e^{1/x}, +\infty]$ puisque x est supérieur ou égal à 1
- B) pour tout entier n supérieur ou égal 3, la dérivée v_n ' de v_n est positive sur J car la fonction g_x croit sur l'intervalle $[e^{1/x}, +\infty[$ puisque x est supérieur ou égal à 1
- C) pour tout entier n supérieur ou égal 3, la fonction v_n est croissante sur J
- D) pour tout entier n supérieur ou égal 3, la fonction v_n est croissante sur [1,3] et décroissante sur [3,+∞[
- 38) La série de fonctions de terme général v_n , n entier naturel non nul,
 - A) est divergente sur l'intervalle J
 - B) est convergente sur J mais n'est pas absolument convergente sur cet intervalle J
 - C) est normalement convergente sur J car pour tout n entier supérieur ou égal à 3 et pour tout x appartenant à J on a $0 \le v_n(x) \le v_n(1) = 1/(n(n+1))$ terme général d'une série numérique convergente
 - D) ne converge pas normalement sur J
- 39) Pour tout n entier naturel non nul, la fonction w_n
 - A) est continue sur]1,+∞[mais n'est pas continue sur J
 - B) est continue sur J car la fonction $((n+1)^u n^u)/u$ tend vers $\ln(n+1) \ln n$ quand u tend vers 0
 - C) vérifie, pour tout x appartenant à J, $0 \le v_n(x) \le w_n(x)$
 - D) vérifie, pour tout x appartenant à J, $0 \le w_n(x) \le v_n(x)$ car, pour x supérieur ou égal à
 - 1, la fonction $1/t^x$ décroit sur l'intervalle [n,n+1]
- 40) La série de fonctions de terme général w_n , n entier naturel non nul
 - A) est divergente sur l'intervalle J
 - B) est normalement convergente sur $[1,+\infty[$ car pour tout *n* entier supérieur ou égal à 3 et pour tout x appartenant à $]1,+\infty[$ on a $0 \le w_n(x) \le 1/(n(n+1))$, mais elle ne converge pas au point x=1
 - C) a pour somme une fonction W continue sur J comme somme d'une série de fonctions continues et normalement convergente sur J
 - D) a pour somme une fonction W continue sur]1,+∞[mais qui n'est pas continue sur J

ÉCOLE NATIONALE DE L'AVIATION CIVILE

Session 2011

CONCOURS DE RECRUTEMENT D'ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE

♦

Épreuve commune obligatoire de PHYSIQUE

Durée: 4 heures

Coefficient: 2

Ce sujet comporte:

1 page de garde
2 pages d'instructions pour remplir le QCM recto/verso
1 page d'avertissements
13 pages de texte recto/verso

♦

CALCULATRICE NON AUTORISÉE