SÉRIES DE NOMBRES RÉELS OU COMPLEXES

– Dans tout le chapitre, K désigne R ou C –

I. Séries numériques

I.1. Définitions et premières propriétés

Déf 1:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} .

On appelle <u>série de terme général u_n </u> la *suite* de terme général S_n , où $S_n = \sum_{k=0}^n u_k$. Cette série se note de façon abrégée : $\sum_{n \in \mathbb{N}} u_n$; S_n s'appelle la <u>somme partielle d'indice n</u> de la série.

Remarques

1. Si la suite (u_n) n'est définie qu'à partir d'un certain rang n_0 , on posera, pour $n \ge n_0$, $S_n = \sum_{k=n_0}^n u_k$. La série se note alors $\sum_{n \ge n_0} u_n$.

2. Important : lien suites-séries

À toute série est associée, par définition, la suite de ses sommes partielles.

Mais, réciproquement, à toute suite (S_n) , on peut associer la série de terme général u_n , où : $u_0 = S_0$ et $u_n = S_n - S_{n-1}$ pour $n \ge 1$.Les S_n sont alors les sommes partielles de la série $\sum u_n$.

Cela permet dans certains cas d'étudier une suite (ici la suite (S_n)) en utilisant les résultats que nous allons voir sur les séries (ici la série de terme général u_n).

Déf 2:

On dit qu'une série de terme général u_n est <u>convergente</u> si la suite (S_n) de ses sommes partielles est convergente dans \mathbb{K} . On note alors $\sum_{k=0}^{+\infty} u_k$, appelée <u>somme</u> de la série, la limite de S_n , soit :

$$\sum_{k=0}^{+\infty} u_k = \lim_{n \to +\infty} \left(\sum_{k=0}^n u_k \right).$$

Une série non convergente est dite divergente.

Rem : L'écriture $\sum_{n\in\mathbb{N}} u_n$ est une simple notation pour désigner la série de terme général u_n . Cependant,

l'écriture $\sum_{k=0}^{+\infty} u_k$ ne doit, elle, n'être utilisée *qu'après* avoir démontré la convergence de la série!

De plus, il ne faut jamais oublier que cette dernière écriture désigne une *limite*, donc tout calcul rigoureux sur les séries doit faire appel aux théorèmes sur les limites de suites.

Remarques

- 1. On ne change pas la nature d'une série (convergence ou divergence) si on considère seulement les sommes partielles à partir d'un certain rang n_0 (mais la valeur de la somme éventuelle change...).
- 2. De même, si deux séries ne diffèrent que d'un nombre fini de termes, elles sont de même nature.

Déf 3:

Soit $\sum_{n\in\mathbb{N}}u_n$ une série convergente, et $S=\sum_{k=0}^{+\infty}u_k$ sa somme. On appelle <u>reste d'ordre n</u> de cette série

le nombre : $R_n = S - S_n = \sum_{k=n+1}^{+\infty} u_k$.

Rem: On a les relations : $\forall n \in \mathbb{N}^*$, $u_n = R_{n-1} - R_n$ et $\lim_{n \to +\infty} R_n = 0$.

Théorème 1: Condition nécessaire de convergence

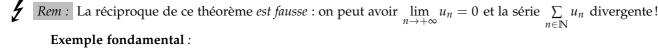
Si la série de terme général u_n converge, alors $\lim_{n\to+\infty}u_n=0$.

Démonstration:

On sait que que $u_n = S_n - S_{n-1}$. Si $\lim S_n = S$ existe, on en déduit immédiatement que $\lim_{n \to \infty} u_n = S - S = 0$.

Déf 4:

5 Une série dont le terme général ne tend pas vers 0 est dite grossièrement divergente.



La série harmonique $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ est divergente (cependant, son terme général tend vers 0!)

 1^{re} méthode : Soit $S_n = \sum_{k=1}^n \frac{1}{k}$. Alors :

$$S_{2n} - S_n = \sum_{k=n+1}^{2n} \frac{1}{k} \geqslant n \cdot \frac{1}{2n} = \frac{1}{2}$$

Si (S_n) était convergente, on devrait avoir $\lim_{n\to+\infty}(S_{2n}-S_n)=0$ d'où la contradiction .

 2^e *méthode*: Le théorème des accroissements finis appliqué à la fonction ln sur l'intervalle [k;k+1] $(k \in \mathbb{N}^*)$ donne:

$$\exists c \in]k; k+1[\text{tq } \ln(k+1) - \ln k = \frac{1}{c},$$

d'où : $\forall k \in \mathbb{N}^*$, $\frac{1}{k+1} \leqslant \ln(k+1) - \ln k \leqslant \frac{1}{k}$, puis, pour $k \geqslant 2$: $\ln(k+1) - \ln k \leqslant \frac{1}{k} \leqslant \ln k - \ln(k-1)$.

En additionnant ces inégalités pour $k \in [2; n]$, on obtient, après télescopage :

$$\ln(n+1) - \ln 2 \leqslant S_n - 1 \leqslant \ln n$$

d'où: $\ln(n+1) - \ln 2 + 1 \le S_n \le \ln n + 1$.

Ce dernier encadrement montre :

- $\lim_{n\to\infty} S_n = +\infty$: la série diverge.
- $\lim_{n\to\infty} \left(\frac{S_n}{\ln n}\right) = 1$ c'est-à-dire $S_n \underset{n\to+\infty}{\sim} \ln n$.

En résumé:

la série harmonique diverge et ses sommes partielles vérifient : $\sum\limits_{k=1}^n \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n$.

I.2. Exemples de séries classiques, à connaître

1. Séries géométriques :

Il s'agit de séries dont le terme général est celui d'une suite géométrique. Si $u_n=q^n$ $(q\in\mathbb{C})$, on a :

$$S_n = \sum_{k=0}^n q^k = \begin{cases} n+1 & \text{si } q=1\\ \frac{1-q^{n+1}}{1-q} & \text{sinon} . \end{cases}$$

Donc:

la série géométrique $\sum\limits_{n\in\mathbb{N}}q^n$ converge si et seulement si |q|<1 et dans ce cas : $\sum\limits_{n=0}^{+\infty}q^n=\frac{1}{1-q}$ ·

Démonstration:

La série diverge évidemment pour q = 1, puisque alors $S_n = n + 1 \xrightarrow[n \to +\infty]{} +\infty$.

- Sinon, la série converge si et seulement si la suite (q^n) converge.

 Si |q| > 1 alors $\lim_{n \to +\infty} |q^n| = +\infty$: la suite (q^n) , non bornée, diverge.

 Si |q| < 1 alors $\lim_{n \to +\infty} |q^n| = 0$ d'où $\lim_{n \to +\infty} q^n = 0$.

 Si |q| = 1 et $q \ne 1$, posons $q = e^{i\theta}$, $\theta \in]0; 2\pi[$. Si la suite $(e^{in\theta})_{n \in \mathbb{N}}$ était convergente vers $\ell \in \mathbb{C}$, puisque $e^{i(n+1)\theta} = e^{i\theta}e^{in\theta}$, on aurait $\ell = e^{i\theta}\ell$ d'où $\ell = 0$ puisque $e^{i\theta} \ne 1$. Mais cela n'est pas possible car $|e^{in\theta}| = 1 \Longrightarrow |\ell| = 1$!

Rem: Plus généralement, si (u_n) est le terme général d'une suite géométrique de raison q avec |q| < 1, et si $n_0 \in \mathbb{N}$, on a la formule :

$$\sum_{k=n_0}^{+\infty} u_k = \frac{u_{n_0}}{1-q} = \text{premier terme} \times \frac{1}{1-q}$$

2. Séries télescopiques :

Il s'agit de séries de la forme $\sum_{n\in\mathbb{N}^*}v_n$, où $v_n=u_n-u_{n-1}$ $(n\geqslant 1)$.

On a alors : $S_n = \sum_{k=1}^{n} v_k = u_n - u_0$ donc :

la série télescopique $\sum_{n\in\mathbb{N}^*} (u_n-u_{n-1})$ converge si et seulement si la *suite* (u_n) converge, et, dans ce cas : $\sum_{k=1}^{+\infty} (u_k - u_{k-1}) = \lim_{n \to +\infty} u_n - u_0$

Exemples:

a)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1.$$

Solution:

On calcule les sommes partielles :

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 1.$$

L'écriture
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{+\infty} \frac{1}{n} \sum_{n=1}^{+\infty} \frac{1}{n+1}$$
 N'A AUCUN SENS!!! (cf. théorème 2)

b) Étudier la suite de terme général $u_n = 1 + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{n}} - 2\sqrt{n}$ $(n \ge 1)$.

Posons $v_n = u_{n+1} - u_n$. Alors, à l'aide d'un petit développement limité :

$$v_n = \frac{1}{\sqrt{n+1}} - 2\left(\sqrt{n+1} - \sqrt{n}\right)$$

$$= \frac{1}{\sqrt{n}} \left(1 + \frac{1}{n}\right)^{-1/2} - 2\sqrt{n} \left(\left(1 + \frac{1}{n}\right)^{1/2} - 1\right) = \frac{1}{\sqrt{n}} \left(1 + O\left(\frac{1}{n}\right)\right) - 2\sqrt{n} \left(\frac{1}{2n} + O\left(\frac{1}{n^2}\right)\right) = O\left(\frac{1}{n^{3/2}}\right),$$

ce qui montre, par comparaison à la série de terme général positif $\frac{1}{n^{3/2}}$ qui est convergente, que la série de terme général v_n est absolument convergente donc convergente.

Ainsi la série de terme général $u_{n+1} - u_n$ converge, donc la suite (u_n) converge.

Rem: Cet exemple est important, car il montre comment utiliser le lien suites-séries.

3. Série harmonique alternée :

Il s'agit de la série $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1}}{n}$.

Notons $S_n = \sum\limits_{k=1}^n \frac{(-1)^{k-1}}{k}$ la n-ième somme partielle $(n\geqslant 1)$. On écrit : $\frac{1}{k}=\int_0^1 t^{k-1}\,\mathrm{d}t$.

$$S_n = \sum_{k=1}^n \int_0^1 (-t)^{k-1} dt = \int_0^1 \left(\sum_{k=1}^n (-t)^{k-1} \right) dt$$
$$= \int_0^1 \frac{1 - (-t)^n}{1 + t} dt = \underbrace{\int_0^1 \frac{dt}{1 + t}}_{=\ln 2} - \underbrace{\int_0^1 \frac{(-t)^n}{1 + t} dt}_{=R_n}$$

avec $|R_n| \leqslant \int_0^1 \frac{t^n}{1+t} \, \mathrm{d}t \leqslant \int_0^1 t^n \, \mathrm{d}t = \frac{1}{n+1} \cdot \text{ Donc } \lim_{n \to \infty} R_n = 0 \text{ puis } \lim_{n \to \infty} S_n = \ln 2. \text{ Ainsi :}$ $\text{la série harmonique alternée converge et } \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} = \ln 2.$

I.3. Opérations sur les séries convergentes

Théorème 2:

Soient $\sum_{n\in\mathbb{N}}u_n$ et $\sum_{n\in\mathbb{N}}v_n$ deux séries convergentes, de sommes respectives U et V, et soit $\lambda\in\mathbb{K}$.

Alors la série $\sum_{n\in\mathbb{N}} (\lambda u_n + v_n)$ est convergente, de somme $\lambda U + V$.

Démonstration:

Posons $U_n = \sum_{k=0}^n u_k$, $V_n = \sum_{k=0}^n v_k$, $w_n = \lambda u_n + v_n$ et $W_n = \sum_{k=0}^n w_k$. Puisqu'il s'agit de sommes finies, on a $W_n = \lambda U_n + V_n$ et le théorème résulte alors des théorèmes sur les limites.

Remarques

1. Si $\sum_{n\in\mathbb{N}}u_n$ est convergente et $\sum_{n\in\mathbb{N}}v_n$ divergente, alors $\sum_{n\in\mathbb{N}}(u_n+v_n)$ est divergente.

En effet, si par l'absurde la série $\sum\limits_{n\in\mathbb{N}}(u_n+v_n)$ était convergente, d'après le théorème précédent, il en serait de même de la série de terme général $(u_n+v_n)-u_n$, ce qui n'est pas.

2. Si $\sum_{n\in\mathbb{N}} u_n$ et $\sum_{n\in\mathbb{N}} v_n$ sont divergentes, on ne peut rien dire a priori de $\sum_{n\in\mathbb{N}} (u_n + v_n)$.

Par exemple, si $u_n = \frac{1}{n}$ pour $n \ge 1$ et $v_n = \frac{1}{n+1}$, la série de terme général $u_n - v_n$ converge mais celle de terme général $u_n + v_n$ diverge.

Soit $\sum_{n\in\mathbb{N}} u_n$ une série de nombres complexes. La série $\sum_{n\in\mathbb{N}} u_n$ converge si et seulement si les deux séries $\sum_{n\in\mathbb{N}} \mathcal{R}e(u_n)$ et $\sum_{n\in\mathbb{N}} \mathcal{I}m(u_n)$ convergent et, dans ce cas :

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \operatorname{Re}\left(u_n\right) + i \sum_{n=0}^{+\infty} \operatorname{Im}\left(u_n\right).$$

Démonstration:

Résulte directement du théorème similaire sur la limite d'une suite à valeurs dans C, en considérant les sommes partielles.

Exemple: Justifier l'existence et calculer : $\sum_{n=0}^{+\infty} \frac{\sin nx}{2^n}$.

Soit $N \in \mathbb{N}$. Notons $S_N = \sum\limits_{n=0}^N \frac{\sin nx}{2^n}$ la somme partielle d'indice N. Alors :

$$S_N = \mathcal{I}m\left(\sum_{n=0}^N \frac{\mathrm{e}^{\mathrm{i}nx}}{2^n}\right) = \mathcal{I}m\left(\sum_{n=0}^N \left(\frac{\mathrm{e}^{\mathrm{i}x}}{2}\right)^n\right) = \mathcal{I}m\left(\frac{1 - \left(\frac{\mathrm{e}^{\mathrm{i}x}}{2}\right)^{N+1}}{1 - \frac{\mathrm{e}^{\mathrm{i}x}}{2}}\right).$$

 $\operatorname{Or} \left| \frac{\mathrm{e}^{\mathrm{i} x}}{2} \right| < 1 \, \operatorname{donc} \, \lim_{N \to +\infty} \left(\frac{\mathrm{e}^{\mathrm{i} x}}{2} \right)^{N+1} = 0 \, \operatorname{donc} \, \lim_{N \to +\infty} S_N \, \operatorname{existe, c'est-\`a-dire que la série proposée converge, et on a la converge de la converge$

$$\sum_{n=0}^{+\infty} \frac{\sin nx}{2^n} = \lim_{N \to +\infty} S_N = \operatorname{Im}\left(\frac{1}{1 - \frac{\mathrm{e}^{\mathrm{i}x}}{2}}\right) = \operatorname{Im}\left(\frac{2(2 - \mathrm{e}^{-\mathrm{i}x})}{\left|2 - \mathrm{e}^{\mathrm{i}x}\right|^2}\right) = \frac{2\sin x}{5 - 4\cos x}.$$

(on a utilisé, sans le dire, le fait que la partie imaginaire de la limite d'une suite est la limite de la suite des parties imaginaires).

II. Séries à termes réels positifs

On étudie dans ce paragraphe les séries à termes réels positifs; puisqu'on ne change pas la nature d'une série si on change un nombre fini de ses termes, les résultats s'appliqueront aussi aux séries à termes réels positifs au moins à partir d'un certain rang.

Si la série $\sum_{n\in\mathbb{N}}u_n$ est à termes réels négatifs, on pourra appliquer les résultats obtenus à la série $\sum_{n\in\mathbb{N}}(-u_n)$, qui est de même nature.

II.1. Règles de comparaison

Soit $\sum_{n\in\mathbb{N}}u_n$ une série à termes réels positifs, et soit $S_n=\sum_{k=0}^nu_k$ ses sommes partielles.

On a alors, pour $n \in \mathbb{N}^*$: $S_n - S_{n-1} = u_n \ge 0$, donc la suite (S_n) est croissante.

D'après le théorème de la limite monotone :

- si (S_n) est majorée, la suite (S_n) converge, c'est-à-dire que la série $\sum_{n\in\mathbb{N}}u_n$ converge.
- si (S_n) n'est pas majorée, $\lim_{n\to+\infty} S_n = +\infty$; la suite (S_n) diverge, c'est-à-dire que la série $\sum_{n\in\mathbb{N}} u_n$ diverge.

On a donc:

Théorème 3:

Une série à termes réels positifs est convergente si et seulement si la suite de ses sommes partielles est majorée.

Ce théorème, fondamental, est à la base de tous les résultats sur les séries à termes réels positifs.

Théorème 4: règle de comparaison pour les séries à termes positifs

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de nombres réels telles que

 $0 \le u_n \le v_n$ (au moins à partir d'un certain rang).

Alors:

- **1.** Si la série $\sum\limits_{n\in\mathbb{N}}v_n$ converge, la série $\sum\limits_{n\in\mathbb{N}}u_n$ converge.
- **2.** Si la série $\sum_{n\in\mathbb{N}}u_n$ diverge, la série $\sum_{n\in\mathbb{N}}v_n$ diverge.

Démonstration:

Supposons $0 \le u_n \le v_n$ pour $n \ge n_0$. Alors, en notant $U_n = \sum_{k=n_0}^n u_k$ et $V_n = \sum_{k=n_0}^n v_k$, on aura $U_n \le V_n$. Ainsi, en utilisant le théorème 3:

- si la série $\sum_{n\in\mathbb{N}}v_n$ converge, ses sommes partielles V_n sont majorées, donc les sommes partielles U_n de la série $\sum u_n$ sont majorées et la série $\sum_{n\in\mathbb{N}}u_n$ converge.

- si la série $\sum_{n\in\mathbb{N}}u_n$ diverge, alors $\lim_{n\to\infty}U_n=+\infty$ (il s'agit d'une série à termes positifs) donc $\lim_{n\to\infty}V_n=+\infty$ et la série $\sum_{n\in\mathbb{N}}v_n$ diverge.

Exemples

1. Étude de la série $\sum_{n \in \mathbb{N}^*} \frac{1}{n^2}$:

On remarque que, pour $n \ge 2$: $0 \le \frac{1}{n^2} \le \frac{1}{n(n-1)}$.

Or $\frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$, donc la série $\sum_{n \ge 2} \frac{1}{n(n-1)}$ converge (télescopage, série déjà étudiée).

D'après le théorème précédent : la série $\sum_{n\in\mathbb{N}^*} \frac{1}{n^2}$ converge.

Rem: On démontrera plus tard que : $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \cdot$

- **2.** Puisque la série harmonique $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ diverge, on obtient : $\alpha \leqslant 1 \Longrightarrow \sum_{n \in \mathbb{N}^*} \frac{1}{n^{\alpha}}$ diverge.
- 3. La série de terme général $\frac{\ln n}{n}$ (pour $n \ge 2$) est divergente. (en effet, $\frac{\ln n}{n} \ge \frac{1}{n}$, qui est le terme général d'une série à termes positifs divergente).

II.2. Comparaison série-intégrale

Quelques résultats préliminaires :

• Soit f une fonction continue sur un intervalle de la forme $[a; +\infty[$, à valeurs dans \mathbb{C} .

On dira que l'intégrale $\int_a^{+\infty} f$ <u>existe</u> (ou <u>est convergente</u>) si et seulement si $\lim_{x \to +\infty} \int_a^x f(t) \, dt$ existe (et est finie). Dans ce cas, on note :

$$\int_{a}^{+\infty} f(t) dt = \lim_{x \to +\infty} \int_{a}^{x} f(t) dt.$$

• Supposons maintenant f à valeurs réelles positives.

La fonction $F: x \longmapsto \int_a^x f(t) dt$ est alors croissante; d'après le théorème de la limite monotone, $\lim_{t \to \infty} F$ existe si et seulement si F est majorée.

Théorème 5: comparaison série-intégrale

Soit f une fonction continue sur un intervalle de la forme $[n_0; +\infty[$ $(n_0 \in \mathbb{N}), à valeurs réelles positives et décroissante. Alors :$

la série
$$\sum_{n\geqslant n_0} f(n)$$
 converge $\iff \int_{n_0}^{+\infty} f$ existe.

Démonstration:

f étant décroissante, on a, pour $n \ge n_0$:

$$\forall t \in [n; n+1], f(n+1) \leqslant f(t) \leqslant f(n),$$

d'où, en intégrant ces inégalités sur l'intervalle [n; n+1]:

$$f(n+1) \leqslant \int_{n}^{n+1} f(t) dt \leqslant f(n)$$

ce que l'on peut écrire aussi :

$$\forall n \geqslant n_0 + 1, \int_{n}^{n+1} f \leqslant f(n) \leqslant \int_{n-1}^{n} f.$$

Cet encadrement est illustré par la figure ci-dessous.

Sur ce graphique, l'aire de chaque rectangle hachuré est égale à f(n), et les aires colorées sont égales à $\int_{n-1}^{n} f(t) dt$ et $\int_{n}^{n+1} f(t) dt$:

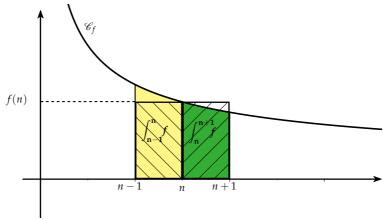


FIGURE 2 – Comparaison série-intégrale

– Supposons d'abord que $\int_{n_0}^{+\infty} f$ existe. Alors, en sommant les inégalités précédentes (partie droite), on a, pour tout entier $N \ge n_0 + 1$:

$$\sum_{n=n_0+1}^N f(n) \leqslant \int_{n_0}^N f \leqslant \int_{n_0}^{+\infty} f.$$

Les sommes partielles de la série à termes positifs $\sum f(n)$ étant majorées, cette série converge.

- Réciproquement, supposons cette série convergente. Alors en sommant les inégalités précédentes (partie gauche) on a :

$$\forall N \ge n_0, \ \int_{n_0}^{N} f \le \sum_{n=n_0}^{N-1} f(n) \le \sum_{n=n_0}^{+\infty} f(n)$$

On aura donc, pour tout réel $x \ge n_0$, puisque f est positive

$$\int_{n_0}^{x} f \leqslant \int_{n_0}^{\lfloor x \rfloor + 1} f \leqslant \sum_{n = n_0}^{+\infty} f(n)$$

La fonction $F: x \mapsto \int_{n_0}^x f$ étant majorée, l'intégrale de f converge (cf. remarque préliminaire).

Rem: Il est tout aussi important de retenir la démonstration que le résultat de ce théorème. En effet, la méthode de comparaison série-intégrale permet d'obtenir facilement un encadrement des sommes partielles ou du reste (en cas de convergence).

Exemples

1. Trouver un équivalent de $\sum_{k=n}^{+\infty} \frac{1}{k^3}$ lorsque $n \to +\infty$

La fonction $t\mapsto \frac{1}{t^3}$ étant continue décroissante sur \mathbb{R}_+^* , on a, pour tout $k\geqslant 2$:

$$\int_{k}^{k+1} \frac{\mathrm{d}t}{t^3} \leqslant \frac{1}{k^3} \leqslant \int_{k-1}^{k} \frac{\mathrm{d}t}{t^3} \,,$$

donc en additionnant ces inégalités pour k variant de $n \ge 2$ à $N \ge n$ et en utilisant la relation de Chasles :

$$\int_{n}^{N+1} \frac{dt}{t^{3}} \le \sum_{k=n}^{N} \frac{1}{k^{3}} \le \int_{n-1}^{N} \frac{dt}{t^{3}}$$

soit:

$$\left[-\frac{1}{2t^2}\right]_n^{N+1} \leqslant \sum_{k=n}^N \frac{1}{k^3} \leqslant \left[-\frac{1}{2t^2}\right]_{n-1}^N.$$

En faisant $N \to +\infty$, ce qui est licite puisque la série converge (série de Riemann, voir ci-après), on obtient :

$$\frac{1}{2n^2} \le \sum_{k=n}^{+\infty} \frac{1}{k^3} \le \frac{1}{2(n-1)^2}$$

d'où l'on tire facilement par le théorème des gendarmes : $\lim_{n \to +\infty} 2n^2 \sum_{k=n}^{+\infty} \frac{1}{k^3} = 1$.

En conclusion : $\sum_{k=n}^{+\infty} \frac{1}{k^3} \sim_{n \to +\infty} \frac{1}{2n^2}$.

2. Trouver un équivalent de $\sum_{k=1}^{n} \sqrt{k}$ lorsque $n \to +\infty$

La fonction $x \mapsto \sqrt{x}$ est continue et croissante sur \mathbb{R}_+ donc :

$$\forall k \geqslant 1, \int_{k-1}^{k} \sqrt{t} \, \mathrm{d}t \leqslant \sqrt{k} \leqslant \int_{k}^{k+1} \sqrt{t} \, \mathrm{d}t$$

en additionnant ces inégalités pour k variant de 1 à $n \ge 1$ et en utilisant la relation de Chasles :

$$\forall n \geqslant 1, \int_0^n \sqrt{t} \, \mathrm{d}t \leqslant \sum_{k=1}^n \sqrt{k} \leqslant \int_1^{n+1} \sqrt{t} \, \mathrm{d}t.$$

On en tire alors facilement (une primitive de $t \mapsto \sqrt{t}$ étant $t \mapsto \frac{2}{3}t^{\frac{3}{2}}$):

$$\sum_{k=1}^{n} \sqrt{k} \underset{n \to +\infty}{\sim} \frac{2}{3} n^{\frac{3}{2}}.$$

II.3. Les séries de Riemann

Il s'agit des séries de terme général $u_n=\frac{1}{n^\alpha}$ ($\alpha\in\mathbb{R}$). On a le résultat suivant : La série de Riemann $\sum \frac{1}{n^\alpha}$ converge si et seulement si $\alpha>1$

Démonstration:

- Si $\alpha \leq 0$, $\frac{1}{n^{\alpha}}$ ne tend pas vers 0, donc la série diverge grossièrement.
- Sinon, on peut appliquer le théorème de comparaison série-intégrale avec f: $t \mapsto \frac{1}{t^{\alpha}}$, qui est continue, positive et décroissante sur [1;+∞[. Donc:

 $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge.

 $\operatorname{Or} \int_{1}^{x} \frac{\mathrm{d}t}{t^{\alpha}} = \begin{cases} \ln x & \text{si } \alpha = 1 \\ \left[\frac{t^{-\alpha+1}}{-\alpha+1}\right]^{x} & \text{sinon} \end{cases} \quad \operatorname{donc} \lim_{x \to +\infty} \int_{1}^{x} \frac{\mathrm{d}t}{t^{\alpha}} \text{ existe si et seulement si } -\alpha+1 < 0 \text{ soit } \alpha > 1.$

III. Séries absolument convergentes

Une série $\sum_{n\in\mathbb{N}} u_n$ d'éléments de \mathbb{K} est dite <u>absolument convergente</u> si la série (à termes réels positifs) $\sum_{n\in\mathbb{N}} |u_n|$ est convergente.

(le symbole | | désignant, comme d'habitude, la valeur absolue si $\mathbb{K} = \mathbb{R}$ et le module si $\mathbb{K} = \mathbb{C}$.)

Théorème 6:

Toute série absolument convergente d'éléments de K est convergente.

De plus, si $\sum_{n\in\mathbb{N}} u_n$ est absolument convergente, on a : $\left|\sum_{n=0}^{+\infty} u_n\right| \leqslant \sum_{n=0}^{+\infty} |u_n|$.

Démonstration:

Soit $\sum u_n$ une série absolument convergente.

- $Cas\ où\ \mathbb{K} = \mathbb{R}$: Dans ce cas on pose $u_n^+ = \max(u_n, 0)$ et $u_n^- = \max(-u_n, 0)$ (ainsi $u_n = u_n^+ u_n^-$ et $|u_n| = u_n^+ + u_n^-$). Les séries $\sum u_n^+$ et $\sum u_n^-$ sont à termes positifs; puisque $u_n^+ \leqslant |u_n|$ et $u_n^- \leqslant |u_n|$, les théorèmes de comparaison prouvent que ces séries convergent. Et puisque $u_n = u_n^+ - u_n^-$, le théorème 2 montre que la série $\sum u_n$ converge.
- $Cas\ où\ \mathbb{K}=\mathbb{C}:$ Dans ce cas, les inégalités $|\mathcal{R}e(u_n)|\leqslant |u_n|$ et $|\mathcal{I}m(u_n)|\leqslant |u_n|$ prouvent que les séries de termes général $\mathcal{R}e(u_n)$ et $\mathcal{I}m(u_n)$ sont des séries à termes réels absolument convergentes donc convergentes d'après le 1er cas, et par suite la série $\sum u_n$ converge.
- Enfin, l'inégalité $\left|\sum_{n=0}^{N}u_{n}\right| \leqslant \sum_{n=0}^{N}|u_{n}|$ valable pour tout entier N entraîne l'inégalité annoncée par passage à la limite.

Rem: Il existe des séries qui sont convergentes, mais pas absolument convergentes. Par exemple, la série harmonique alternée.

Une telle série est dite semi-convergente.

IV. Séries à termes réels de signe quelconque, séries à termes complexes

Dans ce paragraphe, on applique les résultats sur les séries à termes positifs à des séries numériques plus générales, en utilisant l'absolue convergence.

Théorème 7:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{C} et $(v_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs. On suppose que : $u_n = O(v_n)$.

Alors, si la série $\sum\limits_{n\in\mathbb{N}}v_n$ converge, la série $\sum\limits_{n\in\mathbb{N}}u_n$ est absolument convergente (donc convergente).

Démonstration:

L'hypothèse $u_n = O(v_n)$ s'écrit ici :

$$\exists M \in \mathbb{R}, \ \exists n_0 \in \mathbb{N} \ \mathsf{tq} \ \forall \ n \geqslant n_0, \ |u_n| \leqslant M v_n$$

 $(|u_n| \text{ désigne le } module \text{ de } u_n, \text{ et } (v_n) \text{ est à termes réels positifs...})$ Puisque $\sum\limits_{n\in\mathbb{N}}v_n$ converge, il en est de même de $\sum\limits_{n\in\mathbb{N}}Mv_n$, et le théorème 4 implique la convergence de $\sum\limits_{n\in\mathbb{N}}|u_n|$, c'est-à-dire la convergence absolue de $\sum\limits_{n\in\mathbb{N}}u_n$.

Corollaire 7.1:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans \mathbb{C} et $(v_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs.

On suppose que : $u_n = o(v_n)$.

Alors, si la série $\sum_{n\in\mathbb{N}}v_n$ converge, la série $\sum_{n\in\mathbb{N}}u_n$ converge.

Démonstration:

Immédiate; en effet, l'hypothèse $u_n \underset{+\infty}{=} o(v_n)$ s'écrit : $\forall \, \varepsilon > 0, \, \exists r$

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \text{ to } \forall n \geq n_0, |u_n| \leq \varepsilon v_n$$

 $\forall \, \varepsilon > 0, \, \exists n_0 \in \mathbb{N} \, \operatorname{tq} \, \forall \, n \geqslant n_0, \, |u_n| \leqslant \varepsilon v_n \, .$ Il est donc clair que $u_n \underset{+\infty}{=} o(v_n) \Longrightarrow u_n \underset{+\infty}{=} O(v_n)$, et on applique directement le théorème précédent.

Corollaire 7.2: critère de Riemann, ou « règle $n^{\alpha}u_n$ »

Soit $\sum_{n\in\mathbb{N}} u_n$ une série à termes complexes.

- **1.** S'il existe $\ell \in [0; +\infty[$ et $\alpha > 1$ tels que $\lim_{n \to +\infty} n^{\alpha} u_n = \ell$, la série $\sum_{n \in \mathbb{N}} u_n$ est (absolument)
- **2.** S'il existe $\ell \in]0; +\infty]$ et $\alpha < 1$ tels que $\lim_{n \to +\infty} n^{\alpha} |u_n| = \ell$, la série $\sum_{n \in \mathbb{N}} |u_n|$ est divergente.

Démonstration:

- En effet dans ce cas on a u_n = O (1/n^α) donc le résultat découle du théorème de comparaison 7.
 Si lim_{n→+∞} n^α |u_n| = ℓ > 0 alors |u_n| ≥ ½ 1/n^α à partir d'un certain rang (adapter dans le cas ℓ = +∞), donc le résultat découle du théorème de comparaison 4.

Rem: Il ne faut pas apprendre ce critère par cœur, mais en refaire la démonstration à chaque fois, comme on va le voir dans l'exemple important suivant.

Application : les séries de Bertrand

Il s'agit des séries de terme général $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$

Le résultat suivant est hors-programme, mais il est indispensable d'en connaître la démonstration :

La série de Bertrand de terme général $\frac{1}{n^{\alpha}(\ln n)^{\beta}}$ converge si et seulement si $\alpha > 1$ ou $[\alpha = 1 \text{ et } \beta > 1]$.

Démonstration:

– <u>1er cas : $\alpha < 1$ Soit alors γ tel que $\alpha < \gamma < 1$. On a :</u>

$$\lim_{n\to\infty} n^{\gamma} u_n = \lim_{n\to\infty} \frac{n^{\gamma-\alpha}}{(\ln n)^{\beta}} = +\infty$$

puisque $\gamma - \alpha > 0$, et ce, pour tout β .

Donc, pour n assez grand, on aura $n^{\gamma}u_n\geqslant 1$ soit $u_n\geqslant \frac{1}{n^{\gamma}}$. Puisque $\sum \frac{1}{n^{\gamma}}$ diverge, il en est de même de $\sum u_n$.

- <u>2ème cas : $\alpha = 1$ </u> Alors $u_n = \frac{1}{n(\ln n)^{\beta}} = f(n)$ avec, pour $t \geqslant 2$, $f(t) = \frac{1}{t(\ln t)^{\beta}}$
 - Si $\beta \le 0$, $u_n \ge \frac{1}{n}$ pour $n \ge 3$, donc $\sum u_n$ diverge.
 - Si $\beta > 0$, f est continue positive et décroissante sur $[2; +\infty[$, donc $\sum u_n$ converge si et seulement si $\int_2^{+\infty} \frac{\mathrm{d}t}{t(\ln t)^{\beta}}$

$$\operatorname{Or} \int_{2}^{x} \frac{\mathrm{d}t}{t(\ln t)^{\beta}} = \begin{cases} \left[\ln(\ln t)\right]_{2}^{x} & \text{si } \beta = 1\\ \left[\frac{(\ln t)^{-\beta+1}}{-\beta+1}\right]_{2}^{x} & \text{sinon} \end{cases} \\ \operatorname{donc} \lim_{x \to +\infty} \int_{2}^{+\infty} \frac{\mathrm{d}t}{t(\ln t)^{\beta}} \\ \operatorname{existe} \\ \operatorname{si et} \\ \operatorname{seulement} \\ \operatorname{si} \\ -\beta+1 < 0 \\ \operatorname{soit} \\ \beta > 1 \end{cases}$$

– 3ème cas : $\alpha > 1$ Soit γ tel que $1 < \gamma < \alpha$. On a :

$$\lim_{n\to\infty} n^{\gamma} u_n = \lim_{n\to\infty} \frac{n^{\gamma-\alpha}}{(\ln n)^{\beta}} = 0$$

puisque $\gamma - \alpha < 0$, et ce, pour tout β . Donc $u_n = o\left(\frac{1}{n^{\gamma}}\right)$. Puisque $\sum \frac{1}{n^{\gamma}}$ converge, il en est de même de $\sum u_n$.

Théorème 8:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs réelles et $(v_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs. On suppose qu'il existe un réel $k \neq 0$ tel que : $u_n \underset{n \to +\infty}{\sim} kv_n$.

Alors : les séries $\sum_{n\in\mathbb{N}}u_n$ et $\sum_{n\in\mathbb{N}}v_n$ sont de même nature

Démonstration:

- Une remarque préliminaire : l'hypothèse $u_n \sim kv_n$ implique que (u_n) est de signe constant (celui de k) à partir d'un certain rang. Il est donc inutile d'étudier le signe de u_n (mais il faut absolument que (v_n) soit à termes positifs!).
- Supposons $\sum\limits_{n\in\mathbb{N}}v_n$ convergente : $u_n\underset{n\to+\infty}{\sim}kv_n$ signifie $u_n-kv_n\underset{n\to+\infty}{=}o(v_n)$. D'après le corollaire 1, la série $\sum\limits_{n\in\mathbb{N}}(u_n-kv_n)$ converge, et, puisque $u_n=(u_n-kv_n)+kv_n$, $\sum\limits_{n\in\mathbb{N}}u_n$ converge (somme de deux séries convergentes).
- Idem pour la réciproque, compte tenu de la remarque préliminaire, et puisque $v_n \underset{n \to +\infty}{\sim} \frac{1}{k} u_n$.

Exemples

1. Nature de $\sum u_n$ avec $u_n = \sqrt[3]{n^3 + an} - \sqrt{n^2 + 3}$.

On effectue un développement limité de u_n lorsque $n \to +\infty$ (il s'agit d'une méthode très souvent utilisée).

$$u_n = \sqrt[3]{n^3 \left(1 + \frac{a}{n^2}\right)} - \sqrt{n^2 \left(1 + \frac{3}{n^2}\right)} = n \left(\left(1 + \frac{a}{n^2}\right)^{1/3} - \left(1 + \frac{3}{n^2}\right)^{1/2}\right)$$
$$= n \left(\left(1 + \frac{a}{3n^2} + O\left(\frac{1}{n^4}\right)\right) - \left(1 + \frac{3}{2n^2} + O\left(\frac{1}{n^4}\right)\right)\right) = \frac{\frac{a}{3} - \frac{3}{2}}{n} + O\left(\frac{1}{n^3}\right).$$

(on a utilisé ici le développement limité de $(1+h)^{\alpha}$ au voisinage de 0 avec $\alpha=\frac{1}{3}$ et $\alpha=\frac{1}{2}$). On peut alors conclure:

- si $a \neq \frac{9}{2}$, alors $u_n \sim \frac{\frac{a}{3} \frac{3}{2}}{n}$. La série de terme général positif $\frac{1}{n}$ étant divergente, il résulte du théorème $\frac{8}{n}$ que la série $\sum u_n$ diverge aussi;
- si $a=\frac{9}{2}$ alors $u_n=O\left(\frac{1}{n^3}\right)$, et puisque la série à termes positifs $\sum \frac{1}{n^3}$ converge, il en est de même de $\sum u_n$ en vertu du

2. Nature de $\sum u_n$ avec $u_n = \frac{1}{n^3} \left((n+1)^{1+\frac{1}{n}} - (n-1)^{1-\frac{1}{n}} \right)$.

Là encore, on effectue un développement limité de u_n lorsque $n \to +\infty$, afin d'en trouver un équivalent simple. Ce calcul est un peu plus compliqué que le précédent, et il faut retenir la technique utilisée. Elle consiste à utiliser directement l'équivalent $e^x - 1 \sim x$ afin d'éviter de faire en plus un développement limité de exp.

$$u_n = \frac{1}{n^3} \left(e^{\left(1 + \frac{1}{n}\right) \ln(n+1)} - e^{\left(1 - \frac{1}{n}\right) \ln(n-1)} \right) = \frac{1}{n^3} e^{\left(1 - \frac{1}{n}\right) \ln(n-1)} \left(e^{\left(1 + \frac{1}{n}\right) \ln(n+1) - \left(1 - \frac{1}{n}\right) \ln(n-1)} - 1 \right) \tag{*}$$

Posons $v_n = \left(1 + \frac{1}{n}\right) \ln(n+1) - \left(1 - \frac{1}{n}\right) \ln(n-1)$. Un petit calcul auxiliaire donne :

$$\begin{split} v_n &= \left(1 + \frac{1}{n}\right) \ln \left[n\left(1 + \frac{1}{n}\right)\right] - \left(1 - \frac{1}{n}\right) \ln \left[n\left(1 - \frac{1}{n}\right)\right] \\ &= 2\frac{\ln n}{n} + \left(1 + \frac{1}{n}\right) \underbrace{\ln \left(1 + \frac{1}{n}\right)}_{\sim \frac{1}{n}} - \left(1 - \frac{1}{n}\right) \underbrace{\ln \left(1 - \frac{1}{n}\right)}_{\sim -\frac{1}{n}} = 2\frac{\ln n}{n} + O\left(\frac{1}{n}\right) \cdot \underbrace{\frac{\ln n}{n}}_{\sim -\frac{1}{n}} \end{split}$$

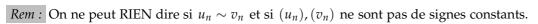
Il en résulte que $v_n \underset{n \to +\infty}{\sim} 2 \frac{\ln n}{n}$, et puisque cette quantité tend vers 0 quand $n \to +\infty$, on a $\mathrm{e}^{v_n} - 1 \underset{n \to +\infty}{\sim} v_n$, et en remplaçant

$$u_n \underset{n \to +\infty}{\sim} \frac{2 \ln n}{n^4} e^{\left(1 - \frac{1}{n}\right) \ln(n-1)}.$$

Puis:

$$e^{\left(1-\frac{1}{n}\right)\ln(n-1)}=e^{\left(1-\frac{1}{n}\right)\left(\ln n+\ln\left(1-\frac{1}{n}\right)\right)}=e^{\ln n+o(1)}=e^{\ln n}\underbrace{e^{o(1)}_{\underset{n\to+\infty}{\longrightarrow}1}}_{n\to+\infty}n.$$

Finalement : $u_n \sim 2 \frac{\ln n}{n^3}$, et par comparaison à une série à termes positifs (théorème 8), la série de terme général u_n est de même nature que la série de terme général $\frac{\ln n}{n^3}$. Et puisque $\frac{\ln n}{n^3} = o\left(\frac{1}{n^2}\right)$, cette série converge.



Exemple: $u_n = \frac{(-1)^n}{n}$ et $v_n = \frac{(-1)^n}{n} + \frac{1}{n \ln n}$: ici, la série de terme général u_n converge (série harmonique alternée), celle de terme général v_n diverge (somme d'une série convergente et d'une série divergente), et pourtant on a bien $u_n \sim v_n$

Théorème 9: Règle de d'Alembert

Soit $\sum_{n\in\mathbb{N}} u_n$ une série à termes complexes *non nuls* (au moins à partir d'un certain rang).

- **1.** S'il existe $k \in]0;1[$ tel que $\left|\frac{u_{n+1}}{u_n}\right| \leqslant k$ (au moins à partir d'un certain rang), alors la série $\sum_{n \in \mathbb{N}} u_n$ est absolument convergente (donc convergente)..
- 2. Si $\left| \frac{u_{n+1}}{u_n} \right| \ge 1$ à partir d'un certain rang, la série $\sum_{n \in \mathbb{N}} u_n$ diverge (grossièrement).

Démonstration:

1. Si $\left| \frac{u_{n+1}}{u_n} \right| \le k$ à partir d'un rang n_0 , on obtient, en faisant le produit de ces inégalités :

$$\forall n \geqslant n_0, |u_n| \leqslant k^{n-n_0} |u_{n_0}|.$$

Le résultat découle alors du fait que la série géométrique de terme général k^{n-n_0} est convergente et de la règle de comparaison pour les séries à termes réels positifs.

pour $n \geqslant n_0 \ |u_n| \geqslant |u_{n_0}| > 0$ donc (u_n) ne peut tendre vers 0 et la série diverge grossièrement.

Corollaire 9.3:

Soit $\sum_{n\in\mathbb{N}} u_n$ une série à termes complexes *non nuls*, telle que $\lim_{n\to+\infty} \left|\frac{u_{n+1}}{u_n}\right| = \ell$ existe dans $\overline{\mathbb{R}}$

- **1.** Si $\ell < 1$, la série $\sum_{n \in \mathbb{N}} u_n$ converge absolument.
- **2.** Si $\ell > 1$, la série $\sum_{n \in \mathbb{N}} u_n$ diverge (grossièrement).

Démonstration:

1. Si
$$\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \ell < 1$$
, on écrit la définition de la limite :

$$\forall \, \varepsilon > 0, \, \exists n_0 \in \mathbb{N} \text{ tq } n \geqslant n_0 \Longrightarrow \ell - \varepsilon < \left| \frac{u_{n+1}}{u_n} \right| < \ell + \varepsilon.$$

Si lim _{n→+∞} | u_{n+1}/u_n | = ℓ < 1, on écrit la définition de la limite :
 ∀ε > 0, ∃n₀ ∈ N tq n ≥ n₀ ⇒ ℓ − ε < | u_{n+1}/u_n | < ℓ + ε.
 On choisit alors ε tel que ℓ + ε < 1, et on applique le théorème précédent.
 Si ℓ > 1 alors | u_{n+1}/u_n | ≥ 1 pour n assez grand, et on applique le théorème précédent.

Rem: Si $\ell = 1$, on ne peut rien dire a priori . Ex : $\sum \frac{1}{n}$ et $\sum \frac{1}{n^2}$.

Application: la fonction exponentielle complexe

Pour tout $z \in \mathbb{C}$, on considère la série $\sum_{n \in \mathbb{N}} \frac{z^n}{n!}$

Il est clair que la série converge si z = 0. Sinon, on pose $u_n = \frac{z^n}{n!}$

Alors $\lim_{n\to\infty}\frac{|u_{n+1}|}{|u_n|}=\lim_{n\to\infty}\frac{|z|}{n+1}=0$. D'après la règle de d'Alembert, la série $\sum_{n\in\mathbb{N}}u_n$ est absolument convergente donc convergente

La somme de cette série se note $\exp(z)$ ou e^z : $\forall z \in \mathbb{C}, \ e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$, et s'appelle l'<u>exponentielle</u> du nombre complexe z.

V. Formule de Stirling

Conformément au programme, les démonstrations de cette section sont non exigibles.

Théorème 10: Critère de Duhamel-Raabe

Soit $\sum\limits_{n\in\mathbb{N}}u_n$ une série à termes réels strictement positifs, telle que :

$$\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{=} 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^{\beta}}\right) \quad \text{avec } \alpha \in \mathbb{R} \text{ et } \beta > 1.$$

Alors, il existe un réel k > 0 tel que $u_n \sim \frac{k}{n^{-k}}$ (et par conséquent, $\sum u_n$ converge si et seulement si $\alpha > 1$).

Démonstration:

On considère la série de terme général $v_n = \ln u_{n+1} - \ln u_n$. On a :

$$v_n = \ln\left(\frac{u_{n+1}}{u_n}\right) = \ln\left(1 - \frac{\alpha}{n} + O\left(\frac{1}{n^{\beta}}\right)\right)$$
$$= -\frac{\alpha}{n} + O\left(\frac{1}{n^{\delta}}\right) \quad \text{avec } \delta = \min(2, \beta)$$
$$= -\frac{\alpha}{n} + w_n \quad \text{avec } w_n = O\left(\frac{1}{n^{\delta}}\right)$$

Puisque $\delta > 1$, la série de terme général w_n est absolument convergente, donc convergente. Notons W sa somme. On a donc, en sommant les égalités précédentes pour n de 1 à N-1:

$$\ln u_N - \ln u_1 = \sum_{n=1}^{N-1} v_n = -\alpha \sum_{n=1}^{N-1} \frac{1}{n} + \sum_{n=1}^{N-1} w_n = -\alpha \sum_{n=1}^{N-1} \frac{1}{n} + W + o(1)$$

donc (en notant γ la constante d'Euler)

$$\begin{split} \ln u_N &= \ln u_1 - \alpha \left(\ln (N-1) + \gamma + o(1) \right) + W + o(1) \\ &= \ln u_1 - \alpha \left(\ln N + \ln (1 - \frac{1}{N}) + \gamma \right) + W + o(1) \\ &= -\alpha \ln N + C + o(1) \end{split}$$

et finalement

$$u_N = e^{-\alpha \ln N + C + o(1)} = \frac{e^C}{N^\alpha} e^{o(1)} \sim \frac{k}{N^\alpha}$$

Application: Formule de Stirling

Pour compléter les résultats vus en Sup sur les comparaisons des suites usuelles, on cherche ici à comparer les suites de termes généraux n! et $\left(\frac{n}{a}\right)^n$, où $a \in \mathbb{R}_+^*$.

Pour cela, on pose $u_n = \frac{\left(\frac{n}{a}\right)^n}{n!}$; on a alors $\frac{u_{n+1}}{u_n} = \frac{1}{a}\left(1 + \frac{1}{n}\right)^n \xrightarrow[n \to \infty]{} \frac{e}{a}$, donc, d'après la règle de d'Alembert pour les suites :

- si a > e, $\lim_{n \to \infty} u_n = 0$;
- $-\sin a < e$, $\lim_{n \to \infty} u_n = +\infty$;
- si a=e, on ne peut rien dire a priori. On effectue alors un développement limité de $\frac{u_{n+1}}{u_n}$. On obtient :

$$\frac{u_{n+1}}{u_n}=1-\frac{1}{2n}+O\left(\frac{1}{n^2}\right).$$

D'après le critère de Duhamel-Raabe, il existe un réel k > 0 tel que $u_n \sim \frac{1/k}{\sqrt{n}}$ soit :

$$n! \sim k \left(\frac{n}{e}\right)^n \sqrt{n}$$
 (1)

Il reste à déterminer la valeur de k. Pour cela, on utilise les <u>intégrales de Wallis</u> $W_n = \int_0^{\pi/2} (\sin t)^n dt$.

- Une intégration par parties donne la relation de récurrence $W_n = \frac{n-1}{n}W_{n-2}$ pour $n \geqslant 2$.
- On en déduit par récurrence : $\forall n \in \mathbb{N}, \ W_{2n} = \frac{(2n)!}{2^{2n}(n!)^2} \cdot \frac{\pi}{2}$ (2).
- Il est facile de vérifier que la suite (W_n) est décroissante. On a donc, pour tout $n \in \mathbb{N}$, $W_{n+2} \leq W_{n+1} \leq W_n$ d'où, en divisant par W_n (qui est strictement positif) :

$$\underbrace{\frac{W_{n+2}}{W_n}}_{=\frac{n+1}{n+2}} \leqslant \frac{W_{n+1}}{W_n} \leqslant 1$$

d'où
$$\lim_{n\to\infty}\frac{W_{n+1}}{W_n}=1$$
, soit : $W_{n+1}\underset{n\to+\infty}{\sim}W_n$.

- D'après la relation de récurrence trouvée plus haut, on a, pour $n \ge 2$: $nW_nW_{n-1} = (n-1)W_{n-1}W_{n-2}$, donc la suite (nW_nW_{n-1}) est constante. On en déduit : $\forall n \in \mathbb{N}^*$, $nW_nW_{n-1} = W_1W_0 = \frac{\pi}{2}$.

À l'aide de l'équivalent précédent, on obtient alors : $W_n \sim \sqrt{\frac{\pi}{2n}}$ et donc $W_{2n} \sim \frac{1}{n \to +\infty} \frac{1}{2} \sqrt{\frac{\pi}{n}}$ (3).

Il ne reste plus qu'à mélanger (1), (2) et (3) : on obtient $k=\sqrt{2\pi}$ d'où la célèbre formule de Stirling :

$$n! \underset{n \to +\infty}{\sim} \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$$

VI. Séries alternées

Déf 6:

Une série à termes réels $\sum_{n\in\mathbb{N}} u_n$ est dite <u>alternée</u> si la suite $((-1)^n u_n)_{n\in\mathbb{N}}$ est de signe constant.

Théorème 11: Critère spécial des séries alternées, ou critère de Leibniz

Soit $\sum_{n\in\mathbb{N}}u_n$ une série alternée. On suppose que

- la suite $(|u_n|)$ est décroissante;
- $-\lim_{n\to\infty}u_n=0.$

Alors la série $\sum_{n\in\mathbb{N}} u_n$ converge.

Démonstration:

La suite (u_n) est alternée. Supposons par exemple $u_0\geqslant 0$. On aura alors, pour tout entier n, $u_{2n}\geqslant 0$ et $u_{2n+1}\leqslant 0$.

Notons $S_n = \sum_{k=0}^n u_k$ la n-ième somme partielle. La suite (S_{2n}) est décroissante car

pour tout entier n, $S_{2n+2} - S_{2n} = u_{2n+2} + u_{2n+1} = |u_{2n+2}| - |u_{2n+1}| \le 0$

et la suite (S_{2n+1}) est croissante car

pour tout entier n, $S_{2n+3} - S_{2n+1} = u_{2n+3} + u_{2n+2} = |u_{2n+2}| - |u_{2n+3}| \ge 0$.

De plus, $S_{2n+1} - S_{2n} = u_{2n+1}$ tend vers 0 quand $n \to \infty$. Les deux suites sont donc adjacentes. Elles convergent donc vers la même limite U, donc la suite (S_n) aussi.

On possède même, dans ce cas, des renseignements supplémentaires :

Théorème 12:

Soit $\sum_{n\in\mathbb{N}} u_n$ une série alternée telle que :

- la suite $(|u_n|)$ est décroissante;
- $-\lim_{n\to\infty}u_n=0.$

et soit S sa somme. Alors :

- 1. S est comprise entre deux sommes partielles d'indices consécutifs.
- **2.** *S* est du signe de u_0 , et $|S| \leq |u_0|$.
- **3.** Si on note $R_n = \sum_{k=n+1}^{+\infty} u_k$ le reste d'ordre n, alors R_n est du signe de u_{n+1} et $|R_n| \leq |u_{n+1}|$.

Démonstration:

- 1. résulte directement du fait que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.
- 2. Dans le cas où $u_0\geqslant 0$, on a $S_1\leqslant S\leqslant S_0$ soit $u_0+u_1\leqslant S\leqslant u_0$, et $u_0+u_1=|u_0|-|u_1|\geqslant 0$, d'où le résultat. Dans le cas $u_0\leqslant 0$, on a $S_0\leqslant S\leqslant S_1$ soit $u_0\leqslant S\leqslant u_0+u_1\leqslant 0$, d'où le résultat.
- 3. On applique le résultat précédent à la série $\sum\limits_{k\in\mathbb{N}}v_k$, avec $v_k=u_{n+1+k}$: pour cette série (qui vérifie encore les hypothèses du CSSA), on a $S = R_n$ et $v_0 = u_{n+1}$.

Exemples:

1. Les séries de Riemann alternées $\sum_{n \in \mathbb{N}^*} \frac{(-1)^{n-1}}{n^{\alpha}}$.

Posons, pour $n \geqslant 1$, $u_n = \frac{(-1)^{n-1}}{n^{\alpha}}$

- Si α ≤ 0, la suite (u_n) ne tend pas vers 0 quand $n \to \infty$, donc la série $\sum u_n$ diverge grossièrement.
- Si $\alpha > 1$, $|u_n| = \frac{1}{n^{\alpha}}$ et la série $\sum u_n$ est absolument convergente, donc convergente.

- Si α ∈]0;1[, la suite (u_n) vérifie les hypothèses du CSSA, donc la série $\sum u_n$ converge (elle est ici semi-convergente).
- **2.** Étude de la série de terme général $u_n = (-1)^n \sqrt{n} \sin\left(\frac{1}{n}\right)$ $(n \ge 1)$

- $|u_n| = \sqrt{n} \sin\left(\frac{1}{n}\right) \sim \frac{1}{\sqrt{n}}$ donc $\sum |u_n|$ diverge: $\sum u_n$ n'est pas absolument convergente.
- u_n est du signe de $(-1)^n$, donc la suite (u_n) est alternée. Si on veut absolument utiliser le CSSA, il faut étudier le signe de $|u_{n+1}| |u_n|$. Pour cela, deux solutions possibles :
 - On effectue un développement limité :

$$|u_{n+1}| - |u_n| = \sqrt{n+1} \sin\left(\frac{1}{n+1}\right) - \sqrt{n} \sin\left(\frac{1}{n}\right)$$

$$= \sqrt{n} \sqrt{1 + \frac{1}{n}} \sin\left(\frac{1}{n(1 + \frac{1}{n})}\right) - \sqrt{n} \sin\left(\frac{1}{n}\right)$$

$$= \sqrt{n} \left(1 + \frac{1}{2n} + O\left(\frac{1}{n^2}\right)\right) \sin\left(\frac{1}{n}\left(1 - \frac{1}{n} + O\left(\frac{1}{n^2}\right)\right)\right) - \sqrt{n} \left(\frac{1}{n} + O\left(\frac{1}{n^3}\right)\right)$$

$$= \sqrt{n} \left(1 + \frac{1}{2n} + O\left(\frac{1}{n^2}\right)\right) \left(\frac{1}{n} - \frac{1}{n^2} + O\left(\frac{1}{n^3}\right)\right) - \sqrt{n} \left(\frac{1}{n} + O\left(\frac{1}{n^3}\right)\right)$$

$$= \sqrt{n} \left(\frac{1}{n} - \frac{1}{2n^2} + O\left(\frac{1}{n^3}\right)\right) - \sqrt{n} \left(\frac{1}{n} + O\left(\frac{1}{n^3}\right)\right)$$

$$= \frac{-1}{2n^{\frac{3}{2}}} + O\left(\frac{1}{n^{\frac{5}{2}}}\right)$$

Ainsi, $|u_{n+1}| - |u_n| \sim \frac{-1}{2n^{\frac{3}{2}}}$, donc $|u_{n+1}| - |u_n|$ est négatif au moins à partir d'un certain rang, ce qui permet d'appliquer le CSSA : $\sum u_n$ converge. (OUF!)

- On peut aussi remarquer que $|u_n| = f(n)$ avec $f(x) = \sqrt{x} \sin\left(\frac{1}{x}\right)$ et étudier le sens de variation de f. Allons-y:

$$f \text{ est } \mathscr{C}^{\infty} \text{ sur } \mathbb{R}_{+}^{*} \text{ et, } \forall \, x > 0, \, f'(x) = \underbrace{\frac{1}{2\sqrt{x}}\sin\left(\frac{1}{x}\right)}_{x \to \infty} - \underbrace{\frac{1}{2^{\frac{3}{2}}}\cos\left(\frac{1}{x}\right)}_{x \to \infty} \underbrace{\operatorname{donc}}_{x \to \infty} \frac{f'(x)}{2x^{\frac{3}{2}}}, \text{ ce qui montre que } f'(x) < 0$$

pour x assez grand, donc que f décroît pour x assez grand, et on aboutit à la même conclusion.

Tout cela est affreusement calculatoire (bien qu'il s'agisse de calculs que tout élève de Sup doit savoir faire!). Il y a une meilleure solution:

On effectue directement un développement limité de u_n :

$$u_n = (-1)^n \sqrt{n} \left(\frac{1}{n} + O\left(\frac{1}{n^3}\right) \right) = \frac{(-1)^n}{\sqrt{n}} + O\left(\frac{1}{n^{\frac{5}{2}}}\right).$$

Ainsi, $u_n = v_n + w_n$, avec $v_n = \frac{(-1)^n}{\sqrt{n}}$ et $w_n = O\left(\frac{1}{n^{\frac{5}{2}}}\right)$. La série de terme général v_n est convergente (série de Riemann) alternée), et celle de terme général w_n est absolument convergente (comparaison à une série de Riemann). Il en résulte que $\sum u_n$ est la somme de deux séries convergentes, donc est convergente.

3. Étude de la série de terme général $u_n = \sin \left(\pi \sqrt{n^2 + 1} \right)$

Solution:

* Ici la suite ne vérifie pas (a priori) les conditions du CSSA.

Mais là encore, un simple développement limité permet de résoudre l'exercice :

$$u_n = \sin\left(\pi n \sqrt{1 + \frac{1}{n^2}}\right) = \sin\left(\pi n \left(1 + \frac{1}{2n^2} + O\left(\frac{1}{n^4}\right)\right)\right)$$
$$= \sin\left(\pi n + \frac{\pi}{2n} + O\left(\frac{1}{n^3}\right)\right) = (-1)^n \sin\left(\frac{\pi}{2n} + O\left(\frac{1}{n^3}\right)\right)$$
$$= \frac{(-1)^n \pi}{2n} + O\left(\frac{1}{n^3}\right)$$

ce qui permet de conclure comme dans l'exercice précédent : $\sum u_n$ est somme d'une série semi-convergente et d'une série absolument convergente, elle est donc convergente.

4. Étude de la série de terme général $u_n = \frac{(-1)^n}{\sqrt{n} + (-1)^{n+1}}$.

Solution:

Je vous laisse le soin de vérifier que (u_n) est bien alternée, tend vers 0 quans $n \to \infty$, mais que $(|u_n|)$ n'est pas décroissante : le CSSA ne s'applique pas!

La solution passe donc par un ... développement limité!

Le calcul (facile) donne : $u_n = \frac{(-1)^n}{\sqrt{n}} + \frac{1}{n} + O\left(\frac{1}{n^{\frac{3}{2}}}\right)$ donc : $\sum u_n$ est somme d'une série semi-convergente, d'une série divergente et d'une série absolument convergente : elle est donc divergente.

5. Étudier la série de terme général $u_n = \ln\left(1 + \sin\frac{(-1)^n}{n^{\alpha}}\right)$ pour $\alpha \in \mathbb{R}$.

- Si $\alpha \le 0$, la suite sin $\frac{(-1)^n}{n^\alpha}$ n'a pas de limite quand $n \to +\infty$. Dans ce cas, la série $\sum u_n$ diverge grossièrement.
- si $\alpha > 0$, $|u_n| \underset{n \to +\infty}{\sim} \frac{1}{n^{\alpha}}$ donc $\sum u_n$ converge absolument si et seulement si $\alpha > 1$ (théorème de comparaison de séries à termes positifs).
- − Si $\alpha \in [0,1]$, on effectue un développement limité :

$$u_n = \ln\left(1 + \frac{(-1)^n}{n^{\alpha}} + O\left(\frac{1}{n^{3\alpha}}\right)\right) = \underbrace{\frac{(-1)^n}{n^{\alpha}}}_{v_n} - \underbrace{\frac{1}{2n^{2\alpha}} + o\left(\frac{1}{n^{2\alpha}}\right)}_{v_n}$$

La série de terme général v_n est une série de Riemann alternée qui vérifie le CSSA, elle converge

 $w_n \sim \frac{1}{2n^{2\alpha}}$ donc par le critère de comparaison des séries à termes positifs (comparaison à une série de Riemann), la série de terme général w_n converge si et seulement si $\alpha > \frac{1}{2}$

Conclusion : par le théorème d'opération sur les séries, la série $\sum u_n$ converge si et seulement si $\alpha > \frac{1}{2}$.

6. Étude de la série de terme général $u_n = \sin(\pi n! e)$.

🛇 Solution:

Cet exercice repose sur une grosse astuce!

On écrit l'inégalité de Taylor-Lagrange pour la fonction $x \mapsto e^x$ entre 0 et 1, à l'ordre n+1:

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{1}{(n+1)!} + r_n$$
 avec $|r_n| \le \frac{e}{(n+2)!}$

Donc
$$\pi e n! = \pi \times \underbrace{n! \left(1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{(n-3)!} + \frac{1}{(n-2)!}\right)}_{\text{entier pair!}} + \underbrace{\pi n! \left(\frac{1}{(n-1)!} + \frac{1}{n!}\right)}_{=\pi(n+1)} + \underbrace{\frac{\pi}{n+1} + r'_n}_{=\pi(n+1)}$$

avec $|r'_n| \leqslant \frac{\pi e}{n^2}$, d'où

$$u_n = \sin\left(2k\pi + (n+1)\pi + \frac{\pi}{n+1} + r_n'\right) = (-1)^{n+1}\sin\left(\frac{\pi}{n+1} + O\left(\frac{1}{n^2}\right)\right)$$
$$= \frac{(-1)^{n+1}\pi}{n+1} + O\left(\frac{1}{n^2}\right).$$

Il en résulte que $\sum u_n$ est la somme d'une série semi-convergente et d'une série absolument convergente, donc est convergente.

VII. Produit de Cauchy de deux séries à termes complexes

Déf 7:

Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites à valeurs complexes.

On appelle série produit de Cauchy des séries de terme général u_n et v_n la série de terme général w_n avec:

$$\forall n \in \mathbb{N}, \ w_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{\substack{p+q=n\\ p,q \in \mathbb{N}}} u_p v_q.$$

Théorème 13:

Si les séries $\sum\limits_{n\in\mathbb{N}}u_n$ et $\sum\limits_{n\in\mathbb{N}}v_n$ sont *absolument* convergentes, alors $\sum\limits_{n\in\mathbb{N}}w_n$ est absolument convergentes.

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$

Démonstration:

• $1er\ cas:\ u_n,v_n\geqslant 0$ On commence par traiter le cas où $\sum u_n$ et $\sum v_n$ sont deux séries de nombres réels positifs.

Notons, pour tout $n \in \mathbb{N}$:

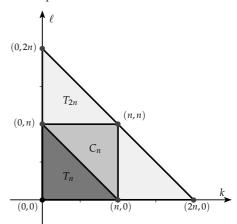
$$U_n = \sum_{k=0}^{n} u_k$$
, $V_n = \sum_{k=0}^{n} v_k$ et $W_n = \sum_{k=0}^{n} w_k$

et considérons les ensembles d'indices (k,ℓ) représentés ci-

$$T_n = \{(k,\ell) \in [0;n]^2, k+\ell \leqslant n\}$$

 $C_n = [0;n]^2$

de sorte que $W_n = \sum\limits_{i=0}^n w_i = \sum\limits_{i=0}^n \sum\limits_{k+\ell=i} u_k v_\ell = \sum\limits_{(k,\ell) \in T_n} u_k v_\ell.$



Les séries étant à termes positifs, on a :

$$\sum_{(k,\ell)\in T_n} u_k v_\ell \leqslant \sum_{(k,\ell)\in C_n} u_k v_\ell \leqslant \sum_{(k,\ell)\in T_{2n}} u_k v_\ell$$

c'est-à-dire $W_n \leqslant U_n V_n \leqslant W_{2n}$

Notons $U = \sum_{n=0}^{+\infty} u_n$ et $V = \sum_{n=0}^{+\infty} v_n$. La première de ces inégalités implique (les séries étant à termes positifs) $W_n \leqslant UV$. Ainsi,

les sommes partielles de la série (à termes positifs) $\sum w_n$ sont majorées; cette série converge donc, et, si l'on note $W = \sum_{n=0}^{+\infty} w_n$,

La deuxième inégalité implique alors, par passage à la limite, $UV \leqslant W$, et finalement : W = UV.

On suppose ici que $\sum u_n$ et $\sum v_n$ sont deux séries absolument convergentes de nombres complexes.

On conserve les notations précédentes, et on note aussi $u'_n = |u_n|$, $v'_n = |v_n|$ et w'_n le terme général de la série produit de Cauchy des séries $\sum u'_n$ et $\sum v'_n$. D'après le cas précédent, $\sum w'_n$ converge.

On a aussi:

$$|w_n| = \left| \sum_{k=0}^n u_k v_{n-k} \right| \le \sum_{k=0}^n |u_k v_{n-k}| = \sum_{k=0}^n u_k' v_{n-k}' = w_n'$$

 $|w_n| = \left|\sum_{k=0}^n u_k v_{n-k}\right| \leqslant \sum_{k=0}^n |u_k v_{n-k}| = \sum_{k=0}^n u_k' v_{n-k}' = w_n'$ donc, d'après les règles de comparaison de séries à termes positifs, la série $\sum w_n$ est absolument convergente, donc convergence. gente.

Enfin, on a : $U_nV_n - W_n = \sum\limits_{(k,\ell) \in C_n \setminus T_n} u_k v_{n-k}$ donc

$$|U_n V_n - W_n| \leqslant \sum_{(k,\ell) \in C_n \setminus T_n} |u_k| |v_{n-k}| = U'_n V'_n - W'_n$$

Or on sait (cas précédent) que $\lim_{n \to \infty} U'_n V'_n - W'_n = 0$; on en déduit $\lim_{n \to \infty} U_n V_n - W_n = 0$, soit W = UV.

Application: l'exponentielle complexe

Prop 2: Des développements en série à connaître

Pour tout $x \in \mathbb{R}$ on a :

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$$
 ; $\sin x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$; $\cos x = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!}$

Démonstration:

On ne démontrera ici que la première de ces relations, la méthode étant exactement la même pour les autres..

On sait que la fonction exponentielle est \mathscr{C}^{∞} sur \mathbb{R} . L'inégalité de Taylor-Lagrange appliquée à $f : t \mapsto e^t$ entre 0 et x s'écrit :

 $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \quad \left| f(x) - \sum_{k=0}^{n} \frac{x^k}{k!} f^{(k)}(0) \right| \le \frac{|x|^{n+1}}{(n+1)!} \sup_{t \in [0,x]} \left| f^{(n+1)}(t) \right|$ $\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \quad \left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \leqslant \frac{|x|^{n+1}}{(n+1)!} \sup_{t \in [0,x]} \left| e^t \right|.$ Or, x étant fixé, $\lim_{n\to\infty} \left(\frac{|x|^{n+1}}{(n+1)!}\right) = 0$ (comparaison des suites usuelles...), donc $\lim_{n\to\infty}\left(\sum_{k=0}^n\frac{x^k}{k!}\right)=\mathrm{e}^x.$

Pour tout $z \in \mathbb{C}$, on a défini : $e^z = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$ (cette série est absolument convergente d'après la règle de d'Alembert, donc convergente).

La proposition précédente montre que la fonction ainsi définie coïncide sur $\mathbb R$ avec la fonction exponentielle « usuelle » (heureusement!).

Prop 3:

Pour tous $(z,z') \in \mathbb{C}^2$ on $a: e^{z+z'} = e^z \cdot e^{z'}$.

Démonstration:

$$e^{z} = \sum_{n=0}^{+\infty} \frac{z^{n}}{n!}$$
 et $e^{z'} = \sum_{n=0}^{+\infty} \frac{z'^{n}}{n!}$

$$e^z = \sum_{n=0}^{+\infty} \underbrace{\frac{z^n}{n!}}_{u_n} \text{ et } e^{z'} = \sum_{n=0}^{+\infty} \underbrace{\frac{z'^n}{n!}}_{v_n} \cdot \\$$
 Le produit de Cauchy des séries $\sum u_n$ et $\sum v_n$ est la série de terme général w_n avec :
$$w_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{k=0}^n \frac{z^k z'^{n-k}}{k!(n-k)!} = \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} z^k z'^{n-k} = \frac{(z+z')^n}{n!}$$
 d'où le résultat en appliquant simplement le théorème précédent, les deux séries étant absolument

Corollaire 3.1:

Pour tout
$$z \in \mathbb{C}$$
, $e^z \neq 0$ et $\frac{1}{e^z} = e^{-z}$.

Démonstration:

Il suffit de prendre z' = -z dans la proposition précédente : $e^z \cdot e^{-z} = e^0 = 1$.

Prop 4:

Pour tout $\theta \in \mathbb{R}$, $e^{i\theta} = \cos \theta + i \sin \theta$.

Démonstration:

Il suffit de considérer les séries parties réelle et imaginaire de la série $\sum \frac{z^n}{n!}$ lorsque $z = i\theta$, puis utiliser la proposition 2.

Corollaire 4.1:

Si
$$z = x + iy$$
 avec x, y réels, on $a : e^z = e^{x + iy} = e^x \cdot e^{iy} = e^x (\cos y + i \sin y)$.

Rem: On peut définir sur C les fonctions sin, cos, sh, ch, etc... par :

$$\forall z \in \mathbb{C}, \ \sin z = \frac{e^{iz} - e^{-iz}}{2i} \quad \cos z = \frac{e^{iz} + e^{-iz}}{2} \quad \sin z = \frac{e^z - e^{-z}}{2} \quad \cot z = \frac{e^z + e^{-z}}{2}.$$

Par combinaison linéaire de séries convergentes, on aura alors, par exemple :

$$\forall z \in \mathbb{C}, \ \sin z = \sum_{n=0}^{+\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \quad , \quad \operatorname{sh} z = \sum_{n=0}^{+\infty} \frac{z^{2n+1}}{(2n+1)!} \quad \text{etc...}$$