Chapitre XIII : Suites et séries de fonctions

PSI*

Décembre 2022

Lycée d'Arsonval

SUITES DE FONCTIONS

Convergence simple

Définition 1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} . On dit que cette suite converge simplement sur I (en abrégé : CVS) si et seulement si

pour tout
$$x \in I$$
, $\lim_{n \to +\infty} f_n(x)$ existe (dans \mathbb{K}).

Convergence simple

Définition 1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} . On dit que cette suite converge simplement sur I (en abrégé : CVS) si et seulement si

pour tout
$$x \in I$$
, $\lim_{n \to +\infty} f_n(x)$ existe (dans \mathbb{K}).

Dans ce cas, on peut définir une application $f:I\longrightarrow \mathbb{K}$ par :

$$\forall x \in I, \ f(x) = \lim_{n \to +\infty} f_n(x).$$

f s'appelle la <u>limite simple</u> de la suite (f_n) .

Soit, pour
$$n \in \mathbb{N}$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^n \end{array} \right.$

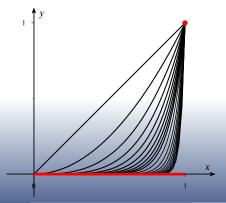
Soit, pour
$$n \in \mathbb{N}$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^n \end{array} \right.$

Pour déterminer la limite simple de cette suite de fonctions, il suffit de déterminer $\lim_{n \to +\infty} x^n$ selon les valeurs de x.

Soit, pour
$$n \in \mathbb{N}$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^n \end{array} \right.$

Pour déterminer la limite simple de cette suite de fonctions, il suffit de déterminer $\lim_{n \to +\infty} x^n$ selon les valeurs de x. On obtient immédiatement que la suite (f_n) converge simplement sur [0;1] vers la fonction $\begin{cases} 0 & \text{si } x \in [0,1] \end{cases}$

$$f \colon x \longmapsto \begin{cases} 0 & \text{si } x \in [0;1[\\ 1 & \text{si } x = 1. \end{cases}$$



Soit, pour $n \in \mathbb{N}$, $n \geqslant 2$, f_n définie par :

 f_n est continue affine par morceaux sur [0;1], $f_n(0)=f_n\left(\frac{2}{n}\right)=f_n(1)=0$, $f_n\left(\frac{1}{n}\right)=n$.

Soit, pour $n \in \mathbb{N}$, $n \geqslant 2$, f_n définie par :

$$f_n$$
 est continue affine par morceaux sur $[0;1]$, $f_n(0)=f_n\left(\frac{2}{n}\right)=f_n(1)=0$, $f_n\left(\frac{1}{n}\right)=n$.

Alors la suite (f_n) converge simplement sur [0;1] vers la fonction nulle.

Soit, pour $n \in \mathbb{N}$, $n \ge 2$, f_n définie par :

$$f_n$$
 est continue affine par morceaux sur $[0;1]$, $f_n(0)=f_n\left(\frac{2}{n}\right)=f_n(1)=0$, $f_n\left(\frac{1}{n}\right)=n$.

Alors la suite (f_n) converge simplement sur [0;1] vers la fonction nulle. En effet, soit $x \in [0;1]$ fixé. Alors :

Soit, pour $n \in \mathbb{N}$, $n \geqslant 2$, f_n définie par :

$$f_n$$
 est continue affine par morceaux sur $[0;1]$, $f_n(0)=f_n\left(\frac{2}{n}\right)=f_n(1)=0$, $f_n\left(\frac{1}{n}\right)=n$.

Alors la suite (f_n) converge simplement sur [0;1] vers la fonction nulle. En effet, soit $x \in [0;1]$ fixé. Alors :

• soit x = 0 et alors $f_n(0) = 0$ pour tout n donc $f_n(0) \underset{n \to +\infty}{\longrightarrow} 0$;

Soit, pour $n \in \mathbb{N}$, $n \geqslant 2$, f_n définie par :

$$f_n$$
 est continue affine par morceaux sur $[0;1]$, $f_n(0)=f_n\left(\frac{2}{n}\right)=f_n(1)=0$, $f_n\left(\frac{1}{n}\right)=n$.

Alors la suite (f_n) converge simplement sur [0;1] vers la fonction nulle. En effet, soit $x \in [0;1]$ fixé. Alors :

- soit x = 0 et alors $f_n(0) = 0$ pour tout n donc $f_n(0) \underset{n \to +\infty}{\longrightarrow} 0$;
- soit $x \in]0;1]$, et alors on a $x > \frac{2}{n}$ pour n assez grand, d'où $f_n(x) = 0$ à partir d'un certain rang et forcément $\lim_{n \to +\infty} f_n(x) = 0$.

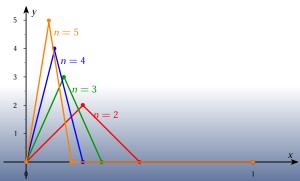
Soit, pour $n \in \mathbb{N}$, $n \ge 2$, f_n définie par :

$$f_n$$
 est continue affine par morceaux sur $[0;1]$, $f_n(0)=f_n\left(\frac{2}{n}\right)=f_n(1)=0$, $f_n\left(\frac{1}{n}\right)=n$.

Alors la suite (f_n) converge simplement sur [0;1] vers la fonction nulle. En effet, soit $x \in [0;1]$ fixé. Alors :

- soit x = 0 et alors $f_n(0) = 0$ pour tout n donc $f_n(0) \xrightarrow[n \to +\infty]{} 0$;
- soit $x \in]0$; [1], et alors on a $x > \frac{2}{n}$ pour n assez grand, d'où $f_n(x) = 0$ à partir d'un certain rang et forcément $\lim_{n \to +\infty} f_n(x) = 0$.

Ce résultat n'est pas très intuitif, si l'on regarde le graphique :



La convergence simple sur I d'une suite de fonctions (f_n) vers f s'écrit

$$\forall x \in I, \ f(x) = \lim_{n \to \infty} f_n(x).$$

La convergence simple sur I d'une suite de fonctions (f_n) vers f s'écrit

$$\forall x \in I, \ f(x) = \lim_{n \to \infty} f_n(x).$$

ou encore, en réécrivant la définition de la limite :

$$\forall x \in I, \ \forall \varepsilon > 0, \ \exists \underbrace{n_0}_{\substack{\text{dépend de} \\ \varepsilon \text{ et de } x}} \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Longrightarrow |f_n(x) - f(x)| < \varepsilon$$

La convergence simple sur I d'une suite de fonctions (f_n) vers f s'écrit

$$\forall x \in I, \ f(x) = \lim_{n \to \infty} f_n(x).$$

ou encore, en réécrivant la définition de la limite :

$$\forall x \in I, \ \forall \varepsilon > 0, \ \exists \underbrace{n_0}_{\substack{\text{dépend de} \\ \varepsilon \text{ et de } x}} \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Longrightarrow |f_n(x) - f(x)| < \varepsilon$$

S'il est normal que n_0 dépende de ε (plus on veut une approximation précise, plus il faut calculer de termes de la suite), il est parfois gênant qu'il dépende aussi de x (la suite ne converge pas partout vers f « à la même vitesse »).

La convergence simple sur I d'une suite de fonctions (f_n) vers f s'écrit

$$\forall x \in I, \ f(x) = \lim_{n \to \infty} f_n(x).$$

ou encore, en réécrivant la définition de la limite :

$$\forall x \in I, \ \forall \varepsilon > 0, \ \exists \underbrace{n_0}_{\substack{\text{dépend de } \varepsilon \text{ et de } x}} \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Longrightarrow |f_n(x) - f(x)| < \varepsilon$$

S'il est normal que n_0 dépende de ε (plus on veut une approximation précise, plus il faut calculer de termes de la suite), il est parfois gênant qu'il dépende aussi de x (la suite ne converge pas partout vers f « à la même vitesse »).Cela a conduit à la définition suivante :

Définition 2

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , et f une application de I dans \mathbb{K} .

On dit que cette suite converge uniformément vers f sur I (en abrégé : CVU) si et seulement si

$$\forall \, \varepsilon > 0, \, \exists \underbrace{n_0}_{\substack{\text{ne dépend} \\ \text{que de } \varepsilon}} \in \mathbb{N}, \, \, \forall \, n \in \mathbb{N}, \, \, n \geqslant n_0 \Longrightarrow \, \forall \, x \in I, \, \, |f_n(x) - f(x)| < \varepsilon$$

Si (f_n) converge uniformément vers f sur I, alors (f_n) converge simplement vers f.

Si (f_n) converge uniformément vers f sur I, alors (f_n) converge simplement vers f.

Démonstration

Immédiat : il suffit de lire les deux définitions.

Si (f_n) converge uniformément vers f sur I, alors (f_n) converge simplement vers f.

Démonstration

Immédiat : il suffit de lire les deux définitions.

Théorème 1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , et f une application de I dans \mathbb{K} .

Alors la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I si et seulement si :

- les fonctions $f_n f$ sont bornées sur I (au moins à partir d'un certain rang);
- et $\lim_{n \to +\infty} \|f_n f\|_{\infty}^I = 0$, où on a posé : $\|f_n f\|_{\infty}^I = \sup_{x \in I} |f_n(x) f(x)|$.

Si (f_n) converge uniformément vers f sur I, alors (f_n) converge simplement vers f.

Démonstration

Immédiat : il suffit de lire les deux définitions.

Théorème 1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , et f une application de I dans \mathbb{K} .

Alors la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I si et seulement si :

- les fonctions $f_n f$ sont bornées sur I (au moins à partir d'un certain rang);
- et $\lim_{n \to +\infty} \|f_n f\|_{\infty}^l = 0$, où on a posé : $\|f_n f\|_{\infty}^l = \sup_{x \in l} |f_n(x) f(x)|$.

Démonstration

En effet, dire que $\|f_n - f\|_{\infty}^I$ existe à partir d'un certain rang et tend vers 0 équivaut à :

$$\forall\,\varepsilon>0\ ,\ \exists n_0\in\mathbb{N}\ \mathrm{tq}\ n\geqslant n_0\Longrightarrow \sup_{x\in I}|f_n(x)-f(x)|<\varepsilon$$

Si (f_n) converge uniformément vers f sur I, alors (f_n) converge simplement vers f.

Démonstration

Immédiat : il suffit de lire les deux définitions.

Théorème 1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , et f une application de I dans \mathbb{K} .

Alors la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I si et seulement si :

- les fonctions $f_n f$ sont bornées sur I (au moins à partir d'un certain rang);
- et $\lim_{n \to +\infty} \|f_n f\|_{\infty}^l = 0$, où on a posé : $\|f_n f\|_{\infty}^l = \sup_{x \in l} |f_n(x) f(x)|$.

Démonstration

En effet, dire que $\|f_n - f\|_{\infty}^I$ existe à partir d'un certain rang et tend vers 0 équivaut à :

$$\forall\,\varepsilon>0\ ,\ \exists n_0\in\mathbb{N}\ \mathrm{tq}\ n\geqslant n_0\Longrightarrow \sup_{x\in I}|f_n(x)-f(x)|<\varepsilon$$

c'est-à-dire à : $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tq $n \geqslant n_0 \Longrightarrow \forall x \in I$, $|f_n(x) - f(x)| < \epsilon$,

Si (f_n) converge uniformément vers f sur I, alors (f_n) converge simplement vers f.

Démonstration

Immédiat : il suffit de lire les deux définitions.

Théorème 1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , et f une application de I dans \mathbb{K} .

Alors la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur I si et seulement si :

- les fonctions $f_n f$ sont bornées sur I (au moins à partir d'un certain rang);
- et $\lim_{n \to +\infty} \|f_n f\|_{\infty}^l = 0$, où on a posé : $\|f_n f\|_{\infty}^l = \sup_{x \in l} |f_n(x) f(x)|$.

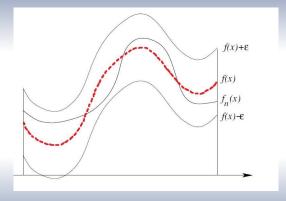
Démonstration

En effet, dire que $\|f_n-f\|_\infty^I$ existe à partir d'un certain rang et tend vers 0 équivaut à :

$$\forall\,\varepsilon>0\ ,\ \exists n_0\in\mathbb{N}\ \mathrm{tq}\ n\geqslant n_0\Longrightarrow \sup_{x\in I}|f_n(x)-f(x)|<\varepsilon$$

c'est-à-dire à : $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ tq $n \ge n_0 \Longrightarrow \forall x \in I$, $|f_n(x) - f(x)| < \epsilon$, ce qui est exactement la définition de la convergence uniforme de (f_n) vers f sur I (et cette définition implique que $f_n - f$ est bornée pour $n \ge n_0$).

La figure suivante donne l'interprétation géométrique de cette définition. Si la suite (f_n) converge uniformément vers f, alors pour n assez grand, le graphe de f_n reste dans un « tube » de largeur constante 2ε autour du graphe de f:



Soit, pour $n \in \mathbb{N}$, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^n \end{array} \right.$

Alors la suite (f_n) converge simplement sur [0;1] vers la fonction $f: x \mapsto \begin{cases} 0 & \text{si } x \in [0;1] \\ 1 & \text{si } x = 1. \end{cases}$

Soit, pour
$$n \in \mathbb{N}$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^n \end{array} \right.$

Alors la suite
$$(f_n)$$
 converge simplement sur $[0;1]$ vers la fonction $f: x \longmapsto \begin{cases} 0 & \text{si } x \in [0;1[\\ 1 & \text{si } x = 1. \end{cases}$

Or
$$||f_n - f||_{\infty}^{[0:1]} = \sup_{x \in [0:1]} |f_n(x) - f(x)| = \sup_{x \in [0:1[} x^n = 1, \text{ donc la suite } (f_n) \text{ ne converge pas uniformément vers } f \text{ sur } [0:1].$$

Soit, pour
$$n \in \mathbb{N}$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^n \end{array} \right.$

Alors la suite (f_n) converge simplement sur [0;1] vers la fonction $f: x \longmapsto \begin{cases} 0 & \text{si } x \in [0;1] \\ 1 & \text{si } x = 1. \end{cases}$

Or $||f_n - f||_{\infty}^{[0:1]} = \sup_{x \in [0:1]} |f_n(x) - f(x)| = \sup_{x \in [0:1]} x^n = 1$, donc la suite (f_n) ne converge pas uniformément vers f sur [0:1].

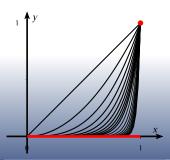
Cependant, il y a convergence uniforme sur tout segment de la forme [0; a] avec $0 \le a < 1$,

Soit, pour $n \in \mathbb{N}$, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^n \end{array} \right.$

Alors la suite (f_n) converge simplement sur [0;1] vers la fonction $f: x \longmapsto \begin{cases} 0 & \text{si } x \in [0;1[\\ 1 & \text{si } x = 1. \end{cases}$

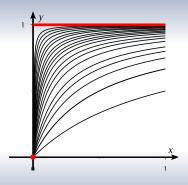
Or $||f_n - f||_{\infty}^{[0:1]} = \sup_{x \in [0:1]} |f_n(x) - f(x)| = \sup_{x \in [0:1[} x^n = 1, \text{ donc la suite } (f_n) \text{ ne converge pas uniformément vers } f \text{ sur } [0:1].$

Cependant, il y a convergence uniforme sur tout segment de la forme [0; a] avec $0 \le a < 1$, puisque $\|f_n - f\|_{\infty}^{[0; a]} = \sup_{x \in [0; a]} |f_n(x) - f(x)| = a^n$ tend vers 0 quand $n \longrightarrow +\infty$.

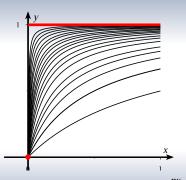


Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{nx}{1+nx} \end{array} \right.$

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{nx}{1+nx} \end{array} \right.$



Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{nx}{1+nx} \end{array} \right.$



Si x = 0, $f_n(0) = 0$ pour tout $n \in \mathbb{N}^*$, et sinon, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{nx}{nx} = 1$ donc la suite (f_n) converge simplement sur [0;1] vers la fonction $f: x \mapsto \begin{cases} 1 & \text{si } x \in [0;1] \\ 0 & \text{si } x = 0 \end{cases}$.

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{nx}{1+nx} \end{array} \right.$

Si
$$x = 0$$
, $f_n(0) = 0$ pour tout $n \in \mathbb{N}^*$, et sinon, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{nx}{nx} = 1$ donc la suite (f_n) converge simplement sur $[0;1]$ vers la fonction $f: x \longmapsto \begin{cases} 1 & \text{si } x \in]0;1] \\ 0 & \text{si } x = 0. \end{cases}$

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{nx}{1+nx} \end{cases}$.

Si
$$x = 0$$
, $f_n(0) = 0$ pour tout $n \in \mathbb{N}^*$, et sinon, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{nx}{nx} = 1$ donc la suite (f_n) converge simplement sur $[0;1]$ vers la fonction $f: x \longmapsto \begin{cases} 1 & \text{si } x \in]0;1] \\ 0 & \text{si } x = 0. \end{cases}$

Or
$$||f_n - f||_{\infty}^{[0:1]} = \sup_{x \in [0:1]} |f_n(x) - f(x)| = \sup_{x \in [0:1]} \frac{1}{1 + nx} = 1$$
, donc la suite (f_n) ne converge pas uniformément vers f sur $[0;1]$.

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} [0;1] \longrightarrow \mathbb{R} \\ x \longmapsto \frac{nx}{1+nx} \end{cases}$.

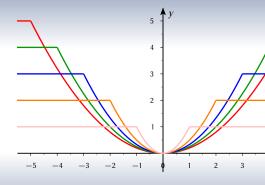
Si
$$x = 0$$
, $f_n(0) = 0$ pour tout $n \in \mathbb{N}^*$, et sinon, $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \frac{nx}{nx} = 1$ donc la suite (f_n) converge simplement sur $[0;1]$ vers la fonction $f: x \longmapsto \begin{cases} 1 & \text{si } x \in [0;1] \\ 0 & \text{si } x = 0 \end{cases}$.

Or
$$||f_n - f||_{\infty}^{[0;1]} = \sup_{x \in [0;1]} |f_n(x) - f(x)| = \sup_{x \in [0;1]} \frac{1}{1 + nx} = 1$$
, donc la suite (f_n) ne converge pas uniformément vers f sur $[0;1]$.

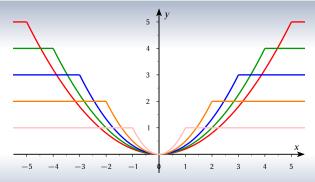
Cependant, il y a convergence uniforme sur tout segment de la forme [a;1] avec $0 < a \leqslant 1$, car $\|f_n - f\|_{\infty}^{[a;1]} = \sup_{x \in [a;1]} |f_n(x) - f(x)| = \frac{1}{1 + na}$ tend vers 0 quand $n \longrightarrow +\infty$.

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \min\left(n, \frac{x^2}{n}\right) \end{array} \right.$

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \min\left(n, \frac{x^2}{n}\right) \end{array} \right.$

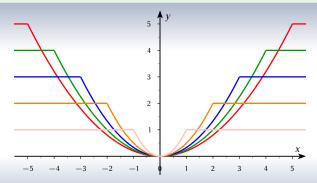


Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \min\left(n, \frac{x^2}{n}\right) \end{array} \right.$



La suite (f_n) converge simplement sur $\mathbb R$ vers la fonction nulle. En effet :

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \min\left(n, \frac{x^2}{n}\right) \end{array} \right.$



La suite (f_n) converge simplement sur $\mathbb R$ vers la fonction nulle. En effet :

Soit $x \in \mathbb{R}$, fixé. Il existe un entier n_0 tel que, pour tout $n \geqslant n_0$, on ait $\frac{x^2}{n} < n$ donc, pour $n \geqslant n_0$,

$$f_n(x) = \frac{x^2}{n}$$
 d'où $\lim_{n \to +\infty} f_n(x) = 0$.

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \min\left(n, \frac{x^2}{n}\right) \end{array} \right.$

La suite (f_n) converge simplement sur $\mathbb R$ vers la fonction nulle. En effet :

Soit $x \in \mathbb{R}$, fixé. Il existe un entier n_0 tel que, pour tout $n \ge n_0$, on ait $\frac{x^2}{n} < n$ donc, pour $n \ge n_0$,

$$f_n(x) = \frac{x^2}{n}$$
 d'où $\lim_{n \to +\infty} f_n(x) = 0$.

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \min\left(n, \frac{x^2}{n}\right) \end{array} \right.$

La suite (f_n) converge simplement sur \mathbb{R} vers la fonction nulle. En effet :

Soit $x \in \mathbb{R}$, fixé. Il existe un entier n_0 tel que, pour tout $n \ge n_0$, on ait $\frac{x^2}{n} < n$ donc, pour $n \ge n_0$,

$$f_n(x) = \frac{x^2}{n}$$
 d'où $\lim_{n \to +\infty} f_n(x) = 0$.

Cependant, il n'y a pas convergence uniforme sur \mathbb{R} , puisque $\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} f_n(x) = n$.

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \min\left(n, \frac{x^2}{n}\right) \end{array} \right.$

La suite (f_n) converge simplement sur $\mathbb R$ vers la fonction nulle. En effet :

Soit $x \in \mathbb{R}$, fixé. Il existe un entier n_0 tel que, pour tout $n \ge n_0$, on ait $\frac{x^2}{n} < n$ donc, pour $n \ge n_0$,

$$f_n(x) = \frac{x^2}{n}$$
 d'où $\lim_{n \to +\infty} f_n(x) = 0$.

Cependant, il n'y a pas convergence uniforme sur \mathbb{R} , puisque $\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} f_n(x) = n$.

If y a cependant convergence uniforme sur tout segment [-a; a] (a > 0).

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \min\left(n, \frac{x^2}{n}\right) \end{array} \right.$

La suite (f_n) converge simplement sur $\mathbb R$ vers la fonction nulle. En effet :

Soit $x \in \mathbb{R}$, fixé. Il existe un entier n_0 tel que, pour tout $n \ge n_0$, on ait $\frac{x^2}{n} < n$ donc, pour $n \ge n_0$,

$$f_n(x) = \frac{x^2}{n}$$
 d'où $\lim_{n \to +\infty} f_n(x) = 0$.

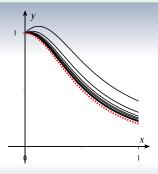
Cependant, il n'y a pas convergence uniforme sur \mathbb{R} , puisque $\sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \sup_{x \in \mathbb{R}} f_n(x) = n$.

Il y a cependant convergence uniforme sur tout segment [-a;a] (a>0). En effet, à partir d'un certain rang n_0 , on a $\frac{a^2}{n} < n$, donc pour tout $x \in [-a;a]$, on aura, pour $n \geqslant n_0$, $f_n(x) = \frac{x^2}{n}$ et

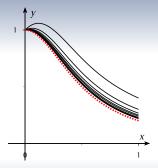
 $\sup_{x \in [-a;a]} |f_n(x) - f(x)| = \frac{a^2}{n}, \text{ qui tend vers 0 quand } n \text{ tend vers } +\infty.$

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{x+n}{n+4nx^2} \end{array} \right.$

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{x+n}{n+4nx^2} \end{array} \right.$

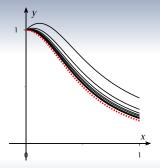


Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \left\{ \begin{array}{ccc} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{x+n}{n+4nx^2} \end{array} \right.$



La suite (f_n) converge simplement sur [0;1] vers la fonction $f: x \longmapsto \frac{1}{1+4x^2}$.

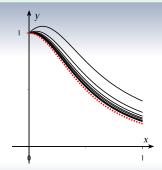
Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{x+n}{n+4nx^2} \end{cases}$



La suite (f_n) converge simplement sur [0;1] vers la fonction $f: x \longmapsto \frac{1}{1+4x^2}$.

Il y a ici convergence uniforme sur [0;1] car :

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} [0;1] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{x+n}{n+4nx^2} \end{cases}$



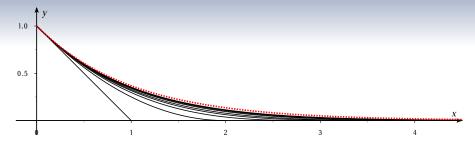
La suite (f_n) converge simplement sur [0;1] vers la fonction $f: x \longmapsto \frac{1}{1+4x^2}$

Il y a ici convergence uniforme sur [0;1] car:

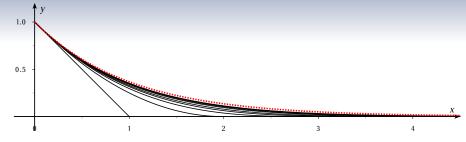
$$\forall x \in [0;1], \ f_n(x) - f(x) = \frac{x}{n(1+4x^2)} \ \text{donc} \ \|f_n - f\|_{\infty}^{[0;1]} = \sup_{x \in [0;1]} |f_n(x) - f(x)| \leqslant \frac{1}{n}.$$

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0 ; n[\\ 0 & \text{si } x \geqslant n \end{cases} \end{cases}$

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ 0 & \text{si } x \geqslant n. \end{cases} \end{cases}$

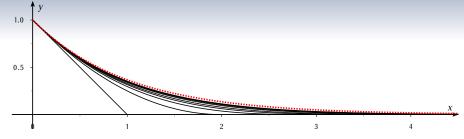


Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ 0 & \text{si } x \geqslant n. \end{cases} \end{cases}$



La suite (f_n) converge simplement sur \mathbb{R}_+ vers la fonction $f: x \mapsto e^{-x}$.

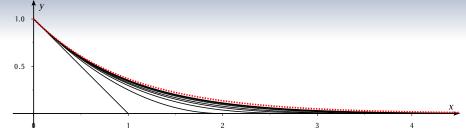
Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ 0 & \text{si } x \geqslant n. \end{cases} \end{cases}$



La suite (f_n) converge simplement sur \mathbb{R}_+ vers la fonction $f: x \mapsto e^{-x}$.

En effet, pour $x \in \mathbb{R}_+$ fixé, on aura $x \in [0; n[$ à partir d'un certain rang donc $f_n(x) = e^{n \ln(1 - \frac{x}{n})}$,

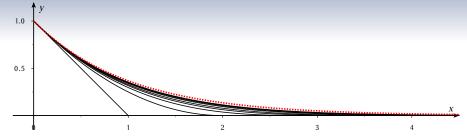
Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ 0 & \text{si } x \geqslant n. \end{cases} \end{cases}$



La suite (f_n) converge simplement sur \mathbb{R}_+ vers la fonction $f: x \mapsto e^{-x}$.

En effet, pour $x \in \mathbb{R}_+$ fixé, on aura $x \in [0; n[$ à partir d'un certain rang donc $f_n(x) = e^{n \ln(1 - \frac{x}{n})}$, et puisque $\ln(1 - \frac{x}{n}) \sim -\frac{x}{n}$, on a $\lim_{n \to +\infty} n \ln(1 - \frac{x}{n}) = -x$ puis $\lim_{n \to +\infty} f_n(x) = e^{-x}$.

Soit, pour
$$n \in \mathbb{N}^*$$
, $f_n : \begin{cases} \mathbb{R}_+ & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \begin{cases} \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ 0 & \text{si } x \geqslant n. \end{cases} \end{cases}$



La suite (f_n) converge simplement sur \mathbb{R}_+ vers la fonction $f: x \mapsto e^{-x}$.

En effet, pour $x \in \mathbb{R}_+$ fixé, on aura $x \in [0; n[$ à partir d'un certain rang donc $f_n(x) = e^{n \ln(1 - \frac{x}{n})}$, et puisque $\ln(1 - \frac{x}{n}) \underset{n \to +\infty}{\sim} - \frac{x}{n}$, on a $\lim_{n \to +\infty} n \ln(1 - \frac{x}{n}) = -x$ puis $\lim_{n \to +\infty} f_n(x) = e^{-x}$.

En étudiant la fonction $g_n: x \mapsto f(x) - f_n(x)$, nous allons montrer que $||f_n - f||_{\infty}^{\mathbb{R}_+} \le \frac{1}{ne}$, donc $\lim_{n \to +\infty} ||f_n - f||_{\infty}^{\mathbb{R}_+} = 0$, c'est-à-dire que la suite (f_n) converge uniformément vers f sur \mathbb{R}_+ .

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

• Pour $x \geqslant n$, $0 \leqslant g_n(x) \leqslant e^{-n}$.

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

- Pour $x \geqslant n$, $0 \leqslant g_n(x) \leqslant e^{-n}$.
- Pour $x \in [0; n[$, on étudie les variations de g_n . $g_n'(x) = -\left(e^{-x} \left(1 \frac{x}{n}\right)^{n-1}\right)$ donc

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0 ; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

- Pour $x \geqslant n$, $0 \leqslant g_n(x) \leqslant e^{-n}$.
- Pour $x \in [0; n[$, on étudie les variations de g_n . $g'_n(x) = -\left(e^{-x} \left(1 \frac{x}{n}\right)^{n-1}\right)$ donc

$$g'_n(x) \geqslant 0 \Longleftrightarrow e^{-x} \leqslant \left(1 - \frac{x}{n}\right)^{n-1} \Longleftrightarrow -x \leqslant (n-1) \ln\left(1 - \frac{x}{n}\right) \Longleftrightarrow h_n(x) \geqslant 0$$

où l'on a posé $h_n(x) = (n-1) \ln \left(1 - \frac{x}{n}\right) + x$.

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0 ; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

- Pour $x \geqslant n$, $0 \leqslant g_n(x) \leqslant e^{-n}$.
- Pour $x \in [0; n[$, on étudie les variations de g_n . $g'_n(x) = -\left(e^{-x} \left(1 \frac{x}{n}\right)^{n-1}\right)$ donc

$$g'_n(x) \geqslant 0 \Longleftrightarrow e^{-x} \leqslant \left(1 - \frac{x}{n}\right)^{n-1} \Longleftrightarrow -x \leqslant (n-1) \ln\left(1 - \frac{x}{n}\right) \Longleftrightarrow h_n(x) \geqslant 0$$

où l'on a posé $h_n(x)=(n-1)\ln\left(1-\frac{x}{n}\right)+x$. On étudie alors rapidement h_n (toujours sur [0;n]).

 $h_n'(x) = \frac{1-x}{n-x}$, et l'étude des variations de h_n montre qu'il existe $\alpha_n \in]1$; n[tel que $h_n(\alpha_n) = 0$, et que $h_n(x) \ge 0$ pour $x \le \alpha_n$ et $h_n(x) \le 0$ pour $x \ge \alpha_n$.

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0 ; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

- Pour $x \geqslant n$, $0 \leqslant g_n(x) \leqslant e^{-n}$.
- Pour $x \in [0; n[$, on étudie les variations de g_n . $g'_n(x) = -\left(e^{-x} \left(1 \frac{x}{n}\right)^{n-1}\right)$ donc

$$g_n'(x) \geqslant 0 \Longleftrightarrow e^{-x} \leqslant \left(1 - \frac{x}{n}\right)^{n-1} \Longleftrightarrow -x \leqslant (n-1) \ln\left(1 - \frac{x}{n}\right) \Longleftrightarrow h_n(x) \geqslant 0$$

où l'on a posé $h_n(x) = (n-1) \ln \left(1 - \frac{x}{n}\right) + x$. On étudie alors rapidement h_n (toujours sur [0; n]).

 $h'_n(x) = \frac{1-x}{n-x}$, et l'étude des variations de h_n montre qu'il existe $\alpha_n \in]1$; n[tel que $h_n(\alpha_n) = 0$, et que $h_n(x) \ge 0$ pour $x \le \alpha_n$ et $h_n(x) \le 0$ pour $x \ge \alpha_n$.

On en déduit ainsi le tableau de variations de g_n (non reproduit ici), qui montre que : $\forall x \in [0 ; n[$, $0 \le g_n(x) \le g_n(\alpha_n)$. On a aussi sur ce tableau $g_n(\alpha_n) \ge e^{-n}$, de sorte que $||g_n||_{\infty}^{\mathbb{R}^+} = g_n(\alpha_n)$.

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

- Pour $x \geqslant n$, $0 \leqslant g_n(x) \leqslant e^{-n}$.
- Pour $x \in [0; n[$, on étudie les variations de g_n . $g'_n(x) = -\left(e^{-x} \left(1 \frac{x}{n}\right)^{n-1}\right)$ donc

$$g_n'(x) \geqslant 0 \iff e^{-x} \leqslant \left(1 - \frac{x}{n}\right)^{n-1} \iff -x \leqslant (n-1)\ln\left(1 - \frac{x}{n}\right) \iff h_n(x) \geqslant 0$$

où l'on a posé $h_n(x) = (n-1) \ln \left(1 - \frac{x}{n}\right) + x$. On étudie alors rapidement h_n (toujours sur [0; n]).

 $h_n'(x) = \frac{1-x}{n-x}$, et l'étude des variations de h_n montre qu'il existe $\alpha_n \in]1$; n[tel que $h_n(\alpha_n) = 0$, et que $h_n(x) \ge 0$ pour $x \le \alpha_n$ et $h_n(x) \le 0$ pour $x \ge \alpha_n$.

On en déduit ainsi le tableau de variations de g_n (non reproduit ici), qui montre que : $\forall x \in [0; n[$, $0 \le g_n(x) \le g_n(\alpha_n)$. On a aussi sur ce tableau $g_n(\alpha_n) \ge e^{-n}$, de sorte que $\|g_n\|_{\infty}^{\mathbb{R}_+} = g_n(\alpha_n)$.

Il reste à estimer la valeur de $g_n(\alpha_n)$.

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

- Pour $x \geqslant n$, $0 \leqslant g_n(x) \leqslant e^{-n}$.
- Pour $x \in [0; n[$, on étudie les variations de g_n . $g'_n(x) = -\left(e^{-x} \left(1 \frac{x}{n}\right)^{n-1}\right)$ donc

$$g'_n(x) \geqslant 0 \Longleftrightarrow e^{-x} \leqslant \left(1 - \frac{x}{n}\right)^{n-1} \Longleftrightarrow -x \leqslant (n-1)\ln\left(1 - \frac{x}{n}\right) \Longleftrightarrow h_n(x) \geqslant 0$$

où l'on a posé $h_n(x) = (n-1) \ln \left(1 - \frac{x}{n}\right) + x$. On étudie alors rapidement h_n (toujours sur [0; n]). $h'_n(x) = \frac{1-x}{n}$, et l'étude des variations de h_n montre qu'il existe $\alpha_n \in [1; n]$ tel que $h_n(\alpha_n) = 0$, et que

 $h'_n(x) = \frac{1}{n-x}$, et l'étude des variations de h_n montre qu'il existe $\alpha_n \in [1; n]$ tel que $h_n(\alpha_n) = 0$, et que $h_n(x) > 0$ pour $x < \alpha$, et $h_n(x) < 0$ pour $x > \alpha$

 $h_n(x) \geqslant 0$ pour $x \leqslant \alpha_n$ et $h_n(x) \leqslant 0$ pour $x \geqslant \alpha_n$.

On en déduit ainsi le tableau de variations de g_n (non reproduit ici), qui montre que : $\forall x \in [0 ; n[$, $0 \le g_n(x) \le g_n(\alpha_n)$. On a aussi sur ce tableau $g_n(\alpha_n) \ge e^{-n}$, de sorte que $\|g_n\|_{\infty}^{\mathbb{R}_+} = g_n(\alpha_n)$.

Il reste à estimer la valeur de $g_n(\alpha_n)$. Sachant que α_n est tel que $h_n(\alpha_n) = 0$, on a $e^{-\alpha_n} = \left(1 - \frac{\alpha_n}{n}\right)^{n-1}$ donc

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

- Pour $x \ge n$, $0 \le g_n(x) \le e^{-n}$.
- Pour $x \in [0; n[$, on étudie les variations de g_n . $g'_n(x) = -\left(e^{-x} \left(1 \frac{x}{n}\right)^{n-1}\right)$ donc

$$g'_n(x) \geqslant 0 \Longleftrightarrow e^{-x} \leqslant \left(1 - \frac{x}{n}\right)^{n-1} \Longleftrightarrow -x \leqslant (n-1) \ln\left(1 - \frac{x}{n}\right) \Longleftrightarrow h_n(x) \geqslant 0$$

où l'on a posé $h_n(x) = (n-1) \ln \left(1 - \frac{x}{n}\right) + x$. On étudie alors rapidement h_n (toujours sur [0; n]).

 $h'_n(x) = \frac{1-x}{2}$, et l'étude des variations de h_n montre qu'il existe $\alpha_n \in]1$; n[tel que $h_n(\alpha_n) = 0$, et que $h_n(x) \ge 0$ pour $x \le \alpha_n$ et $h_n(x) \le 0$ pour $x \ge \alpha_n$.

On en déduit ainsi le tableau de variations de g_n (non reproduit ici), qui montre que : $\forall x \in [0; n]$, $0 \leqslant g_n(x) \leqslant g_n(\alpha_n)$. On a aussi sur ce tableau $g_n(\alpha_n) \geqslant e^{-n}$, de sorte que $||g_n||_{\infty}^{\mathbb{R}_+} = g_n(\alpha_n)$.

Il reste à estimer la valeur de $g_n(\alpha_n)$. Sachant que α_n est tel que $h_n(\alpha_n) = 0$, on a $e^{-\alpha_n} = \left(1 - \frac{\alpha_n}{\alpha_n}\right)^{n-1}$ donc

$$g_n(\alpha_n) = e^{-\alpha_n} - \left(1 - \frac{\alpha_n}{n}\right)^n = e^{-\alpha_n} - \left(1 - \frac{\alpha_n}{n}\right)e^{-\alpha_n} = \frac{\alpha_n}{n}e^{-\alpha_n} \leqslant \frac{1}{ne}$$

puisque une étude rapide montre que : $\forall x \in \mathbb{R}_+, xe^{-x} \leqslant \frac{1}{x}$

$$g_n(x) = f(x) - f_n(x) = \begin{cases} e^{-x} - \left(1 - \frac{x}{n}\right)^n & \text{si } x \in [0; n[\\ e^{-x} & \text{si } x \geqslant n. \end{cases}$$

- Pour $x \geqslant n$, $0 \leqslant g_n(x) \leqslant e^{-n}$.
- Pour $x \in [0; n[$, on étudie les variations de g_n . $g'_n(x) = -\left(e^{-x} \left(1 \frac{x}{n}\right)^{n-1}\right)$ donc

$$g'_n(x) \geqslant 0 \Longleftrightarrow e^{-x} \leqslant \left(1 - \frac{x}{n}\right)^{n-1} \Longleftrightarrow -x \leqslant (n-1) \ln\left(1 - \frac{x}{n}\right) \Longleftrightarrow h_n(x) \geqslant 0$$

où l'on a posé $h_n(x) = (n-1) \ln \left(1 - \frac{x}{n}\right) + x$. On étudie alors rapidement h_n (toujours sur [0; n]). $h'_n(x) = \frac{1-x}{n}$, et l'étude des variations de h_n montre qu'il existe $\alpha_n \in]1; n[$ tel que $h_n(\alpha_n) = 0$, et que

 $h_n(x) \ge 0$ pour $x \le \alpha_n$ et $h_n(x) \le 0$ pour $x \ge \alpha_n$.

On en déduit ainsi le tableau de variations de g_n (non reproduit ici), qui montre que : $\forall x \in [0; n[$, $0 \le g_n(x) \le g_n(\alpha_n)$. On a aussi sur ce tableau $g_n(\alpha_n) \ge e^{-n}$, de sorte que $||g_n||_{\infty}^{\mathbb{R}_+} = g_n(\alpha_n)$.

Il reste à estimer la valeur de $g_n(\alpha_n)$. Sachant que α_n est tel que $h_n(\alpha_n) = 0$, on a $e^{-\alpha_n} = \left(1 - \frac{\alpha_n}{n}\right)^{n-1}$ donc

$$g_n(\alpha_n) = e^{-\alpha_n} - \left(1 - \frac{\alpha_n}{n}\right)^n = e^{-\alpha_n} - \left(1 - \frac{\alpha_n}{n}\right)e^{-\alpha_n} = \frac{\alpha_n}{n}e^{-\alpha_n} \leqslant \frac{1}{ne}$$

puisque une étude rapide montre que : $\forall x \in \mathbb{R}_+, \ xe^{-x} \leqslant \frac{1}{e}$. Cela démontre le résultat annoncé.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , qui converge uniformément sur I vers une application $f\colon I\longrightarrow \mathbb{K}$.

Si les f_n sont bornées sur I, alors f est bornée sur I.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , qui converge uniformément sur I vers une application $f\colon I\longrightarrow \mathbb{K}$.

Si les f_n sont bornées sur I, alors f est bornée sur I.

Démonstration

On applique la définition de la convergence uniforme, avec par exemple $\varepsilon=$ 1; cela donne

$$\exists n_0 \in \mathbb{N} \text{ tq } \forall n \geqslant n_0 \text{ , } \forall x \in I \text{ , } |f_n(x) - f(x)| \leqslant 1.$$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , qui converge uniformément sur I vers une application $f\colon I\longrightarrow \mathbb{K}$.

Si les f_n sont bornées sur I, alors f est bornée sur I.

Démonstration

On applique la définition de la convergence uniforme, avec par exemple $\varepsilon=$ 1; cela donne

$$\exists n_0 \in \mathbb{N} \text{ tq } \forall n \geqslant n_0 , \ \forall x \in I, \ |f_n(x) - f(x)| \leqslant 1.$$

On a alors, en particulier:

$$\forall x \in I, |f(x) - f_{n_0}(x)| \leqslant 1$$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , qui converge **uniformément** sur I vers une application $f:I\longrightarrow\mathbb{K}$.

Si les f_n sont bornées sur I, alors f est bornée sur I.

Démonstration

On applique la définition de la convergence uniforme, avec par exemple $\varepsilon=$ 1; cela donne

$$\exists n_0 \in \mathbb{N} \text{ tq } \forall n \geqslant n_0 , \ \forall x \in I, \ |f_n(x) - f(x)| \leqslant 1.$$

On a alors, en particulier:

$$\forall x \in I, |f(x) - f_{n_0}(x)| \leqslant 1$$

d'où, en utilisant l'inégalité triangulaire :

$$\forall x \in I, |f(x)| \leq |f_{n_0}(x)| + 1 \leq ||f_{n_0}||_{\infty}^{I} + 1$$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , qui converge uniformément sur I vers une application $f:I\longrightarrow\mathbb{K}$.

Si les f_n sont bornées sur I, alors f est bornée sur I.

Démonstration

On applique la définition de la convergence uniforme, avec par exemple $\varepsilon=$ 1; cela donne

$$\exists n_0 \in \mathbb{N} \text{ tq } \forall n \geqslant n_0 , \ \forall x \in I, \ |f_n(x) - f(x)| \leqslant 1.$$

On a alors, en particulier:

$$\forall x \in I$$
, $|f(x) - f_{n_0}(x)| \leq 1$

d'où, en utilisant l'inégalité triangulaire :

$$\forall x \in I, |f(x)| \leq |f_{n_0}(x)| + 1 \leq ||f_{n_0}||_{\infty}^{I} + 1$$

ce qui montre que f est bornée sur I.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , qui converge uniformément sur I vers une application $f\colon I\longrightarrow \mathbb{K}$.

Si les f_n sont bornées sur I, alors f est bornée sur I.

Remarque: Le résultat ne subsiste pas si il y a seulement convergence simple : considérer par exemple la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur [0;1] par :

$$f_n(x) = \frac{n}{nx+1}$$
 si $x \in]0;1]$ et $f_n(0) = 0$.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , qui converge **uniformément** sur I vers une application $f:I\longrightarrow\mathbb{K}$.

Si les f_n sont bornées sur I, alors f est bornée sur I.

Remarque: Le résultat ne subsiste pas si il y a seulement convergence simple : considérer par exemple la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur [0;1] par :

$$f_n(x) = \frac{n}{nx+1}$$
 si $x \in]0;1]$ et $f_n(0) = 0$.

Proposition 3: et déf 3

L'ensemble $\mathcal{B}(I,\mathbb{K})$ des applications bornées de I dans \mathbb{K} est un espace vectoriel normé pour la norme définie par

$$\forall f \in \mathscr{B}(I, \mathbb{K}), \quad ||f||_{\infty}^{I} = \sup_{x \in I} |f(x)|$$

Cette norme s'appelle la norme de la convergence uniforme.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite d'applications définies sur un intervalle I, à valeurs dans \mathbb{K} , qui converge uniformément sur I vers une application $f\colon I\longrightarrow \mathbb{K}$.

Si les f_n sont bornées sur I, alors f est bornée sur I.

Remarque: Le résultat ne subsiste pas si il y a seulement convergence simple : considérer par exemple la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ définies sur [0;1] par :

$$f_n(x) = \frac{n}{nx+1}$$
 si $x \in]0;1]$ et $f_n(0) = 0$.

Proposition 3: et déf 3

L'ensemble $\mathcal{B}(I,\mathbb{K})$ des applications bornées de I dans \mathbb{K} est un espace vectoriel normé pour la norme définie par

$$\forall f \in \mathscr{B}(I, \mathbb{K}), \quad ||f||_{\infty}^{I} = \sup_{x \in I} |f(x)|$$

Cette norme s'appelle la norme de la convergence uniforme.

D'après la proposition 2, si (f_n) est une suite d'éléments de $\mathscr{B}(I, \mathbb{K})$ qui converge uniformément vers $f \in \mathcal{A}(I, \mathbb{K})$, alors $f \in \mathscr{B}(I, \mathbb{K})$, et la convergence uniforme de (f_n) vers f s'écrit alors :

$$\lim_{n\to\infty}\|f_n-f\|_{\infty}^I=0,$$

c'est-à-dire que la suite (f_n) tend vers f dans l'espace vectoriel normé $(\mathcal{B}(I,\mathbb{K}),\|\ \|_{\infty})$ (au sens qui a été vu dans le chapitre sur les espaces vectoriels normés).

CONTINUITÉ DE LA LIMITE D'UNE SUITE DE FONCTIONS

Soit (f_n) une suite d'applications de I dans \mathbb{K} , qui converge simplement vers une application $f:I\to\mathbb{K}$. Soit $a\in I$. On suppose que :

- les f_n sont continues en a (au moins à partir d'un certain rang);
- il existe un voisinage V de a tel que la suite (f_n) converge uniformément vers f sur V.

Alors f est continue en a.

Soit (f_n) une suite d'applications de I dans \mathbb{K} , qui converge simplement vers une application $f: I \to \mathbb{K}$. Soit $a \in I$. On suppose que :

- les f_n sont continues en a (au moins à partir d'un certain rang);
- il existe un voisinage V de a tel que la suite (f_n) converge uniformément vers f sur V.

Alors f est continue en a.

Démonstration

Soit $\varepsilon>0$. Par définition de la convergence uniforme, on a en particulier :

$$\exists N \in \mathbb{N} \ \ \mathrm{tq} \ \ \forall \, x \in V, \ |f_N(x) - f(x)| < \frac{\varepsilon}{3}$$

Soit (f_n) une suite d'applications de I dans \mathbb{K} , qui converge simplement vers une application $f: I \to \mathbb{K}$. Soit $a \in I$. On suppose que :

- les f_n sont continues en a (au moins à partir d'un certain rang);
- il existe un voisinage V de a tel que la suite (f_n) converge uniformément vers f sur V.

Alors f est continue en a.

Démonstration

Soit $\varepsilon > 0$. Par définition de la convergence uniforme, on a en particulier :

$$\exists N \in \mathbb{N} \ \ \mathrm{tq} \ \ \forall \, x \in V, \ |f_N(x) - f(x)| < \frac{\varepsilon}{3}$$

Puisque f_N est continue en a on a :

$$\exists V' \in \mathscr{V}(a) \text{ tq } \forall x \in V', \ |f_N(x) - f_N(a)| < rac{arepsilon}{3} \cdot$$

Soit (f_n) une suite d'applications de I dans \mathbb{K} , qui converge simplement vers une application $f:I\to\mathbb{K}$. Soit $a\in I$. On suppose que :

- les f_n sont continues en a (au moins à partir d'un certain rang);
- il existe un voisinage V de a tel que la suite (f_n) converge uniformément vers f sur V.

Alors f est continue en a.

Démonstration

Soit $\varepsilon > 0$. Par définition de la convergence uniforme, on a en particulier :

$$\exists N \in \mathbb{N} \ \text{tq} \ \forall x \in V, \ |f_N(x) - f(x)| < \frac{\varepsilon}{3}$$

Puisque f_N est continue en a on a :

$$\exists V' \in \mathscr{V}(a) \text{ tq } \forall x \in V', |f_N(x) - f_N(a)| < \frac{\varepsilon}{3}.$$

Donc, pour tout $x \in V \cap V'$ on aura, en utilisant l'inégalité triangulaire :

$$|f(x) - f(a)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(a)| + |f_N(a) - f(a)| < \epsilon$$

Soit (f_n) une suite d'applications de I dans \mathbb{K} , qui converge simplement vers une application $f:I\to\mathbb{K}$. Soit $a\in I$. On suppose que :

- les f_n sont continues en a (au moins à partir d'un certain rang);
- il existe un voisinage V de a tel que la suite (f_n) converge uniformément vers f sur V.

Alors f est continue en a.

Démonstration

Soit $\varepsilon > 0$. Par définition de la convergence uniforme, on a en particulier :

$$\exists N \in \mathbb{N} \ \text{tq} \ \forall x \in V, \ |f_N(x) - f(x)| < \frac{\varepsilon}{3}$$

Puisque f_N est continue en a on a :

$$\exists V' \in \mathscr{V}(a) \text{ tq } \forall x \in V', |f_N(x) - f_N(a)| < \frac{\varepsilon}{3}$$

Donc, pour tout $x \in V \cap V'$ on aura, en utilisant l'inégalité triangulaire :

$$|f(x) - f(a)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(a)| + |f_N(a) - f(a)| < \epsilon$$

ce qui est la définition de la continuité de f en a.

Si la suite (f_n) converge simplement vers f sur I et si, pour tout $a \in I$ il existe un voisinage V de a tel que la convergence de (f_n) vers f sur V soit uniforme, on dira qu'il y a <u>convergence uniforme locale sur I</u>.

Si la suite (f_n) converge simplement vers f sur I et si, pour tout $a \in I$ il existe un voisinage V de a tel que la convergence de (f_n) vers f sur V soit uniforme, on dira qu'il y a <u>convergence uniforme locale sur I.</u>

Remarque : Il est clair que, s'il y a convergence uniforme sur *I* entier, il y a a fortiori convergence uniforme locale ; la réciproque est fausse, comme le montre l'exemple de la suite de fonctions $(x \mapsto x^n)$ sur [0;1[.

Si la suite (f_n) converge simplement vers f sur I et si, pour tout $a \in I$ il existe un voisinage V de a tel que la convergence de (f_n) vers f sur V soit uniforme, on dira qu'il y a convergence uniforme locale sur I.

Remarque : Il est clair que, s'il y a convergence uniforme sur I entier, il y a a fortiori convergence uniforme locale; la réciproque est fausse, comme le montre l'exemple de la suite de fonctions $(x \mapsto x^n)$ sur [0;1[.

Corollaire:

Si la suite (f_n) converge simplement vers f sur I, la convergence étant uniforme locale, et si les f_n sont continues sur I, alors f est continue sur I.

Si la suite (f_n) converge simplement vers f sur I et si, pour tout $a \in I$ il existe un voisinage V de a tel que la convergence de (f_n) vers f sur V soit uniforme, on dira qu'il y a convergence uniforme locale sur I.

Remarque : Il est clair que, s'il y a convergence uniforme sur I entier, il y a a fortiori convergence uniforme locale; la réciproque est fausse, comme le montre l'exemple de la suite de fonctions $(x \mapsto x^n)$ sur [0;1[.

Corollaire:

Si la suite (f_n) converge simplement vers f sur I, la convergence étant uniforme locale, et si les f_n sont continues sur I, alors f est continue sur I.

Démonstration

En effet, pour tout $a \in I$ il existe un voisinage V de a tel que la suite (f_n) converge uniformément vers f sur V. D'après le théorème précédent, f est continue en a, et puisque cela est vrai pour tout $a \in I$, f est continue sur I.

Si la suite (f_n) converge simplement vers f sur I et si, pour tout $a \in I$ il existe un voisinage V de a tel que la convergence de (f_n) vers f sur V soit uniforme, on dira qu'il y a convergence uniforme locale sur I.

Remarque : Il est clair que, s'il y a convergence uniforme sur I entier, il y a a fortiori convergence uniforme locale; la réciproque est fausse, comme le montre l'exemple de la suite de fonctions $(x \mapsto x^n)$ sur [0;1[.

Corollaire:

Si la suite (f_n) converge simplement vers f sur I, la convergence étant uniforme locale, et si les f_n sont continues sur I, alors f est continue sur I.

Qui peut le plus peut le moins :

Si la suite (f_n) converge simplement vers f sur I et si, pour tout $a \in I$ il existe un voisinage V de a tel que la convergence de (f_n) vers f sur V soit uniforme, on dira qu'il y a convergence uniforme locale sur I.

Remarque : Il est clair que, s'il y a convergence uniforme sur I entier, il y a a fortiori convergence uniforme locale; la réciproque est fausse, comme le montre l'exemple de la suite de fonctions $(x \mapsto x^n)$ sur [0;1[.

Corollaire:

Si la suite (f_n) converge simplement vers f sur I, la convergence étant uniforme locale, et si les f_n sont continues sur I, alors f est continue sur I.

Qui peut le plus peut le moins :

Corollaire:

Si la suite (f_n) converge uniformément vers f sur I, et si les f_n sont continues sur I, alors f est continue sur I.

Si la suite (f_n) converge simplement vers f sur I et si, pour tout $a \in I$ il existe un voisinage V de a tel que la convergence de (f_n) vers f sur V soit uniforme, on dira qu'il y a convergence uniforme locale sur I.

Remarque : Il est clair que, s'il y a convergence uniforme sur I entier, il y a a fortiori convergence uniforme locale; la réciproque est fausse, comme le montre l'exemple de la suite de fonctions $(x \mapsto x^n)$ sur [0;1[.

Corollaire:

Si la suite (f_n) converge simplement vers f sur I, la convergence étant uniforme locale, et si les f_n sont continues sur I, alors f est continue sur I.

Qui peut le plus peut le moins :

Corollaire:

Si la suite (f_n) converge uniformément vers f sur I, et si les f_n sont continues sur I, alors f est continue sur I.

Remarque: Ce théorème peut parfois servir à montrer qu'il n'y a pas convergence uniforme.

Si la suite (f_n) converge simplement vers f sur I et si, pour tout $a \in I$ il existe un voisinage V de a tel que la convergence de (f_n) vers f sur V soit uniforme, on dira qu'il y a convergence uniforme locale sur I.

Remarque : Il est clair que, s'il y a convergence uniforme sur I entier, il y a a fortiori convergence uniforme locale; la réciproque est fausse, comme le montre l'exemple de la suite de fonctions $(x \mapsto x^n)$ sur [0;1[.

Corollaire:

Si la suite (f_n) converge simplement vers f sur I, la convergence étant uniforme locale, et si les f_n sont continues sur I, alors f est continue sur I.

Qui peut le plus peut le moins :

Corollaire:

Si la suite (f_n) converge uniformément vers f sur I, et si les f_n sont continues sur I, alors f est continue sur I.

Remarque: Ce théorème peut parfois servir à montrer qu'il n'y a pas convergence uniforme.

Reprenons le premier exemple du chapitre, avec $f_n(x) = x^n$ pour $x \in [0;1]$. On a vu que la suite (f_n) converge simplement sur [0;1] vers la fonction $f \colon x \longmapsto \begin{cases} 0 & \text{si } x \in [0;1[\\ 1 & \text{si } x = 1 \end{cases}$.

Si la suite (f_n) converge simplement vers f sur I et si, pour tout $a \in I$ il existe un voisinage V de a tel que la convergence de (f_n) vers f sur V soit uniforme, on dira qu'il y a convergence uniforme locale sur I.

Remarque : Il est clair que, s'il y a convergence uniforme sur I entier, il y a a fortiori convergence uniforme locale; la réciproque est fausse, comme le montre l'exemple de la suite de fonctions $(x \mapsto x^n)$ sur [0;1[.

Corollaire:

Si la suite (f_n) converge simplement vers f sur I, la convergence étant uniforme locale, et si les f_n sont continues sur I, alors f est continue sur I.

Qui peut le plus peut le moins :

Corollaire:

Si la suite (f_n) converge uniformément vers f sur I, et si les f_n sont continues sur I, alors f est continue sur I.

Remarque: Ce théorème peut parfois servir à montrer qu'il n'y a pas convergence uniforme.

Reprenons le premier exemple du chapitre, avec $f_n(x) = x^n$ pour $x \in [0;1]$. On a vu que la suite (f_n) converge simplement sur [0;1] vers la fonction $f: x \longmapsto \begin{cases} 0 & \text{si } x \in [0;1[\\ 1 & \text{si } x = 1 \end{cases}$.

Les f_n sont continues sur [0;1] mais pas f: il ne peut donc pas y avoir convergence uniforme sur [0;1].

INTÉGRATION D'UNE SUITE DE FONCTIONS SUR UN SEGMENT

Soit (f_n) une suite de fonctions continues sur un segment [a;b] de \mathbb{R} , et **convergeant uniformément sur** [a;b] vers une fonction f.

Alors f est continue sur [a; b] et :

$$\int_a^b f(t) dt = \lim_{n \to +\infty} \int_a^b f_n(t) dt.$$

Soit (f_n) une suite de fonctions continues sur un segment [a;b] de \mathbb{R} , et **convergeant uniformément** sur [a;b] vers une fonction f.

Alors f est continue sur [a; b] et :

$$\int_a^b f(t) dt = \lim_{n \to +\infty} \int_a^b f_n(t) dt.$$

Démonstration

La continuité de f est assurée par le théorème 2.

Soit (f_n) une suite de fonctions continues sur un segment [a;b] de \mathbb{R} , et **convergeant uniformément sur** [a;b] vers une fonction f.

Alors f est continue sur [a; b] et :

$$\int_a^b f(t) dt = \lim_{n \to +\infty} \int_a^b f_n(t) dt.$$

Démonstration

La continuité de f est assurée par le théorème 2. La continuité des fonctions en présence assure aussi l'existence des intégrales considérées. On a alors :

Soit (f_n) une suite de fonctions continues sur un segment [a;b] de \mathbb{R} , et **convergeant uniformément sur** [a;b] vers une fonction f.

Alors f est continue sur [a; b] et :

$$\int_a^b f(t) dt = \lim_{n \to +\infty} \int_a^b f_n(t) dt.$$

Démonstration

La continuité de f est assurée par le théorème 2. La continuité des fonctions en présence assure aussi l'existence des intégrales considérées. On a alors :

$$\left| \int_{a}^{b} f_{n}(t) dt - \int_{a}^{b} f(t) dt \right| = \left| \int_{a}^{b} (f_{n}(t) - f(t)) dt \right|$$

$$\leq \int_{a}^{b} |f_{n}(t) - f(t)| dt \leq \int_{a}^{b} ||f_{n} - f||_{\infty} dt = (b - a) ||f_{n} - f||_{\infty}$$

Soit (f_n) une suite de fonctions continues sur un segment [a;b] de \mathbb{R} , et **convergeant uniformément sur** [a;b] vers une fonction f.

Alors f est continue sur [a; b] et :

$$\int_a^b f(t) dt = \lim_{n \to +\infty} \int_a^b f_n(t) dt.$$

Démonstration

La continuité de f est assurée par le théorème 2. La continuité des fonctions en présence assure aussi l'existence des intégrales considérées. On a alors :

$$\left| \int_{a}^{b} f_{n}(t) dt - \int_{a}^{b} f(t) dt \right| = \left| \int_{a}^{b} (f_{n}(t) - f(t)) dt \right|$$

$$\leq \int_{a}^{b} |f_{n}(t) - f(t)| dt \leq \int_{a}^{b} ||f_{n} - f||_{\infty} dt = (b - a) ||f_{n} - f||_{\infty}$$

et le résultat découle de $\lim_{n\to+\infty} \|f_n - f\|_{\infty} = 0$.

Soit (f_n) une suite de fonctions continues sur un segment [a;b] de \mathbb{R} , et convergeant uniformément sur [a;b] vers une fonction f.

Alors f est continue sur [a; b] et :

$$\int_a^b f(t) dt = \lim_{n \to +\infty} \int_a^b f_n(t) dt.$$

Démonstration

La continuité de f est assurée par le théorème 2. La continuité des fonctions en présence assure aussi l'existence des intégrales considérées. On a alors :

$$\left| \int_{a}^{b} f_{n}(t) dt - \int_{a}^{b} f(t) dt \right| = \left| \int_{a}^{b} (f_{n}(t) - f(t)) dt \right|$$

$$\leq \int_{a}^{b} |f_{n}(t) - f(t)| dt \leq \int_{a}^{b} ||f_{n} - f||_{\infty} dt = (b - a) ||f_{n} - f||_{\infty}$$

et le résultat découle de $\lim_{n\to+\infty} \|f_n - f\|_{\infty} = 0$.

Remarque: Le théorème s'applique également à une suite de fonctions f_n continues par morceaux, qui converge uniformément sur [a;b] vers une fonction f continue par morceaux.

Soit (f_n) une suite de fonctions continues sur un segment [a;b] de \mathbb{R} , et **convergeant uniformément sur** [a;b] vers une fonction f.

Alors f est continue sur [a; b] et :

$$\int_a^b f(t) dt = \lim_{n \to +\infty} \int_a^b f_n(t) dt.$$

Démonstration

La continuité de f est assurée par le théorème 2. La continuité des fonctions en présence assure aussi l'existence des intégrales considérées. On a alors :

$$\left| \int_{a}^{b} f_{n}(t) dt - \int_{a}^{b} f(t) dt \right| = \left| \int_{a}^{b} (f_{n}(t) - f(t)) dt \right|$$

$$\leq \int_{a}^{b} |f_{n}(t) - f(t)| dt \leq \int_{a}^{b} ||f_{n} - f||_{\infty} dt = (b - a) ||f_{n} - f||_{\infty}$$

et le résultat découle de $\lim_{n\to+\infty} \|f_n - f\|_{\infty} = 0$.

Remarque: Le théorème s'applique également à une suite de fonctions f_n continues par morceaux, qui converge uniformément sur [a;b] vers une fonction f continue par morceaux. La démonstration est similaire, mais il faut en plus vérifier la continuité par morceaux de f, celle-ci n'étant plus assurée par la convergence uniforme.

Exemple 1

Soit $(f_n)_{n\geqslant 1}$ la suite de fonctions définies sur [0;1] par

$$f_n(0) = f_n\left(\frac{1}{n}\right) = f_n(1) = 0$$
 ; $f_n\left(\frac{1}{2n}\right) = n$ et f_n continue affine par morceaux.

Exemple 1

Soit $(f_n)_{n\geqslant 1}$ la suite de fonctions définies sur [0;1] par

$$f_n(0) = f_n\left(\frac{1}{n}\right) = f_n(1) = 0$$
 ; $f_n\left(\frac{1}{2n}\right) = n$ et f_n continue affine par morceaux.

On a déjà montré que la suite (f_n) converge simplement sur [0;1] vers la fonction nulle.

Exemple 1

Soit $(f_n)_{n\geqslant 1}$ la suite de fonctions définies sur [0;1] par

$$f_n(0) = f_n\left(\frac{1}{n}\right) = f_n(1) = 0$$
 ; $f_n\left(\frac{1}{2n}\right) = n$ et f_n continue affine par morceaux.

On a déjà montré que la suite (f_n) converge simplement sur [0;1] vers la fonction nulle.

Cependant, pour tout $n \in \mathbb{N}^*$, $\int_0^1 f_n(t) dt = \frac{1}{2}$ ne converge pas vers 0!

Exemple 2

Soit $(f_n)_{n\geqslant 2}$ la suite de fonctions définies par :

$$f_n(t) = \frac{1}{n}$$
 pour $t \in [0; n - \frac{1}{n}]$; $f_n(t) = 0$ pour $t \ge n$ et f_n continue affine par morceaux.

Exemple 1

Soit $(f_n)_{n\geqslant 1}$ la suite de fonctions définies sur [0;1] par

$$f_n(0) = f_n\left(\frac{1}{n}\right) = f_n(1) = 0$$
 ; $f_n\left(\frac{1}{2n}\right) = n$ et f_n continue affine par morceaux.

On a déjà montré que la suite (f_n) converge simplement sur [0;1] vers la fonction nulle.

Cependant, pour tout $n \in \mathbb{N}^*$, $\int_0^1 f_n(t) dt = \frac{1}{2}$ ne converge pas vers 0!

Exemple 2

Soit $(f_n)_{n\geqslant 2}$ la suite de fonctions définies par :

$$f_n(t) = \frac{1}{n}$$
 pour $t \in [0; n - \frac{1}{n}]$; $f_n(t) = 0$ pour $t \geqslant n$ et f_n continue affine par morceaux.

Alors $||f_n||_{\infty}^{\mathbb{R}_+} = \frac{1}{n}$ donc la suite (f_n) converge uniformément sur \mathbb{R}_+ vers la fonction nulle.

Exemple 1

Soit $(f_n)_{n\geqslant 1}$ la suite de fonctions définies sur [0;1] par

$$f_n(0) = f_n\left(\frac{1}{n}\right) = f_n(1) = 0$$
 ; $f_n\left(\frac{1}{2n}\right) = n$ et f_n continue affine par morceaux.

On a déjà montré que la suite (f_n) converge simplement sur [0;1] vers la fonction nulle.

Cependant, pour tout $n \in \mathbb{N}^*$, $\int_0^1 f_n(t) dt = \frac{1}{2}$ ne converge pas vers 0!

Exemple 2

Soit $(f_n)_{n\geqslant 2}$ la suite de fonctions définies par :

$$f_n(t) = \frac{1}{n}$$
 pour $t \in [0; n - \frac{1}{n}]$; $f_n(t) = 0$ pour $t \ge n$ et f_n continue affine par morceaux.

Alors $||f_n||_{\infty}^{\mathbb{R}_+} = \frac{1}{n}$ donc la suite (f_n) converge uniformément sur \mathbb{R}_+ vers la fonction nulle.

Cependant, on vérifie facilement que $\lim_{n \to +\infty} \int_{\mathbb{R}_+} f_n = 1$.

DÉRIVATION D'UNE SUITE DE FONCTIONS

Soit (f_n) une suite de fonctions de classe \mathcal{C}^1 , convergeant simplement sur un intervalle I vers une fonction f de classe \mathcal{C}^1 .

On n'a pas nécessairement $(\lim f_n)' = \lim f_n'$, même s'il y a convergence uniforme!

Soit (f_n) une suite de fonctions de classe \mathscr{C}^1 , convergeant simplement sur un intervalle I vers une fonction f de classe \mathscr{C}^1 .

On n'a pas nécessairement $(\lim f_n)' = \lim f'_n$, même s'il y a convergence uniforme!

Exemple

Soit
$$f_n \colon x \in \mathbb{R} \mapsto \frac{\sin nx}{\sqrt{n}}$$
 pour $n \in \mathbb{N}^*$.

Soit (f_n) une suite de fonctions de classe \mathcal{C}^1 , convergeant simplement sur un intervalle I vers une fonction f de classe \mathcal{C}^1 .

On n'a pas nécessairement $(\lim f_n)' = \lim f_n'$, même s'il y a convergence uniforme!

Exemple

Soit
$$f_n : x \in \mathbb{R} \mapsto \frac{\sin nx}{\sqrt{n}}$$
 pour $n \in \mathbb{N}^*$.

Alors $\|f_n\|_{\infty}^{\mathbb{R}} = \frac{1}{\sqrt{n}}$, donc la suite (f_n) converge uniformément sur \mathbb{R} vers la fonction nulle.

Soit (f_n) une suite de fonctions de classe \mathscr{C}^1 , convergeant simplement sur un intervalle I vers une fonction f de classe \mathscr{C}^1 .

On n'a pas nécessairement $(\lim f_n)' = \lim f'_n$, même s'il y a convergence uniforme!

Exemple

Soit
$$f_n \colon x \in \mathbb{R} \mapsto \frac{\sin nx}{\sqrt{n}}$$
 pour $n \in \mathbb{N}^*$.

Alors $||f_n||_{\infty}^{\mathbb{R}} = \frac{1}{\sqrt{n}}$, donc la suite (f_n) converge uniformément sur \mathbb{R} vers la fonction nulle.

Cependant, $f'_n(x) = \sqrt{n} \cos nx$, et la suite (f'_n) n'a même pas de limite simple!

Soit (f_n) une suite de fonctions de classe \mathscr{C}^1 , convergeant simplement sur un intervalle I vers une fonction f de classe \mathscr{C}^1 .

On n'a pas nécessairement $(\lim f_n)' = \lim f'_n$, même s'il y a convergence uniforme!

Exemple

Soit
$$f_n \colon x \in \mathbb{R} \mapsto \frac{\sin nx}{\sqrt{n}}$$
 pour $n \in \mathbb{N}^*$.

Alors $\|f_n\|_{\infty}^{\mathbb{R}} = \frac{1}{\sqrt{n}}$, donc la suite (f_n) converge uniformément sur \mathbb{R} vers la fonction nulle.

Cependant, $f'_n(x) = \sqrt{n} \cos nx$, et la suite (f'_n) n'a même pas de limite simple!

Il faut donc des hypothèses supplémentaires pour pouvoir dériver la limite d'une suite de fonctions.

Théorème 4: Dérivation de la limite d'une suite de fonctions.

Soit (f_n) une suite de fonctions de classe \mathscr{C}^1 sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- a) La suite de fonctions (f_n) converge simplement sur I vers une fonction f.
- b) La suite de fonctions (f'_n) converge simplement sur I vers une fonction g, la convergence étant uniforme locale sur I.

Alors la fonction f est de classe \mathscr{C}^1 sur I, et, pour tout $x \in I$, f'(x) = g(x) (soit, en abrégé, $(\lim f_n)' = \lim f_n'$).

De plus, la suite (f_n) converge uniformément localement vers f.

Théorème 4: Dérivation de la limite d'une suite de fonctions.

Soit (f_n) une suite de fonctions de classe \mathscr{C}^1 sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- a) La suite de fonctions (f_n) converge simplement sur I vers une fonction f.
- b) La suite de fonctions (f'_n) converge simplement sur I vers une fonction g, la convergence étant uniforme locale sur I.

Alors la fonction f est de classe \mathscr{C}^1 sur I, et, pour tout $x \in I$, f'(x) = g(x) (soit, en abrégé, $(\lim f_n)' = \lim f_n'$).

De plus, la suite (f_n) converge uniformément localement vers f.

Démonstration

• Puisque la suite de fonctions continues (f'_n) converge uniformément localement vers g sur I, d'après le théorème 2 g est continue sur I.

Soit (f_n) une suite de fonctions de classe \mathscr{C}^1 sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- a) La suite de fonctions (f_n) converge simplement sur I vers une fonction f.
- b) La suite de fonctions (f'_n) converge simplement sur I vers une fonction g, la convergence étant uniforme locale sur I.

Alors la fonction f est de classe \mathscr{C}^1 sur I, et, pour tout $x \in I$, f'(x) = g(x) (soit, en abrégé, $(\lim f_n)' = \lim f_n'$).

De plus, la suite (f_n) converge uniformément localement vers f.

Démonstration

- Puisque la suite de fonctions continues (f'_n) converge uniformément localement vers g sur I, d'après le théorème 2 g est continue sur I.
- Soit $a \in I$, et V un un intervalle contenant a sur lequel il y a convergence uniforme de la suite (f'_n) vers g.

Soit (f_n) une suite de fonctions de classe \mathscr{C}^1 sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- a) La suite de fonctions (f_n) converge simplement sur I vers une fonction f.
- b) La suite de fonctions (f'_n) converge simplement sur I vers une fonction g, la convergence étant uniforme locale sur I.

Alors la fonction f est de classe \mathscr{C}^1 sur I, et, pour tout $x \in I$, f'(x) = g(x) (soit, en abrégé, $(\lim f_n)' = \lim f_n'$).

De plus, la suite (f_n) converge uniformément localement vers f.

Démonstration

- Puisque la suite de fonctions continues (f'_n) converge uniformément localement vers g sur I, d'après le théorème 2 g est continue sur I.
- Soit $a \in I$, et V un un intervalle contenant a sur lequel il y a convergence uniforme de la suite (f'_n) vers g. Pour tout $x \in V$ on a $f_n(x) = f_n(a) + \int_a^x f'_n(t) dt$.

Soit (f_n) une suite de fonctions de classe \mathscr{C}^1 sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- a) La suite de fonctions (f_n) converge simplement sur I vers une fonction f.
- b) La suite de fonctions (f'_n) converge simplement sur I vers une fonction g, la convergence étant uniforme locale sur I.

Alors la fonction f est de classe \mathscr{C}^1 sur I, et, pour tout $x \in I$, f'(x) = g(x) (soit, en abrégé, $(\lim f_n)' = \lim f_n'$).

De plus, la suite (f_n) converge uniformément localement vers f.

Démonstration

- Puisque la suite de fonctions continues (f'_n) converge uniformément localement vers g sur I, d'après le théorème 2 g est continue sur I.
- Soit $a \in I$, et V un un intervalle contenant a sur lequel il y a convergence uniforme de la suite (f'_n) vers g. Pour tout $x \in V$ on a $f_n(x) = f_n(a) + \int_a^x f'_n(t) dt$. Puisque la convergence de la suite (f'_n) vers g est uniforme sur le segment [a; x] (ou [x; a]), le théorème 3 donne :

$$\lim_{n\to+\infty}\int_a^x f_n'(t)\,\mathrm{d}t = \int_a^x g(t)\,\mathrm{d}t.$$

Soit (f_n) une suite de fonctions de classe \mathscr{C}^1 sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- a) La suite de fonctions (f_n) converge simplement sur I vers une fonction f.
- b) La suite de fonctions (f'_n) converge simplement sur I vers une fonction g, la convergence étant uniforme locale sur I.

Alors la fonction f est de classe \mathscr{C}^1 sur I, et, pour tout $x \in I$, f'(x) = g(x) (soit, en abrégé, $(\lim f_n)' = \lim f_n'$).

De plus, la suite (f_n) converge uniformément localement vers f.

Démonstration

- Puisque la suite de fonctions continues (f'_n) converge uniformément localement vers g sur I, d'après le théorème 2 g est continue sur I.
- Soit $a \in I$, et V un un intervalle contenant a sur lequel il y a convergence uniforme de la suite (f'_n) vers g. Pour tout $x \in V$ on a $f_n(x) = f_n(a) + \int_a^x f'_n(t) dt$. Puisque la convergence de la suite (f'_n) vers g est uniforme sur le segment [a; x] (ou [x; a]), le théorème 3 donne :

$$\lim_{n \to +\infty} \int_{a}^{x} f'_{n}(t) dt = \int_{a}^{x} g(t) dt.$$

• De plus, la convergence simple de la suite (f_n) vers f donne $\lim_{n \to +\infty} f_n(x) = f(x)$ et $\lim_{n \to +\infty} f_n(a) = f(a)$.

• On en déduit, pour tout $x \in V$, $f(x) = f(a) + \int_a^x g(t) dt$.

• On en déduit, pour tout $x \in V$, $f(x) = f(a) + \int_a^x g(t) dt$. Par suite, f est de classe \mathscr{C}^1 sur V et f' = g.

• On en déduit, pour tout $x \in V$, $f(x) = f(a) + \int_a^x g(t) dt$. Par suite, f est de classe \mathscr{C}^1 sur V et f' = g. Cela étant vrai au voisinage de tout $a \in I$, c'est vrai sur I (les notions de continuité et de dérivabilité sont des notions locales).

- On en déduit, pour tout $x \in V$, $f(x) = f(a) + \int_a^x g(t) dt$. Par suite, f est de classe \mathscr{C}^1 sur V et f' = g. Cela étant vrai au voisinage de tout $a \in I$, c'est vrai sur I (les notions de continuité et de dérivabilité sont des notions locales).
- Enfin, si a est un élément de l et si l est un segment contenant a sur lequel la suite (f'_n) converge uniformément vers g (il en existe par hypothèse), on aura, grâce à l'inégalité triangulaire et à l'inégalité de la moyenne :

- On en déduit, pour tout $x \in V$, $f(x) = f(a) + \int_a^x g(t) dt$. Par suite, f est de classe \mathscr{C}^1 sur V et f' = g. Cela étant vrai au voisinage de tout $a \in I$, c'est vrai sur I (les notions de continuité et de dérivabilité sont des notions locales).
- Enfin, si a est un élément de l et si l est un segment contenant a sur lequel la suite (f'_n) converge uniformément vers g (il en existe par hypothèse), on aura, grâce à l'inégalité triangulaire et à l'inégalité de la moyenne :

$$\forall x \in J, |f_n(x) - f(x)| = \left| (f_n(a) - f(a)) + \left(\int_a^x (f'_n(t) - g(t)) dt \right) \right|$$

$$\leq |f_n(a) - f(a)| + \ell(J) ||f'_n - g||_{\infty}^J$$

en notant $\ell(J)$ la longueur de J.

- On en déduit, pour tout x ∈ V, f(x) = f(a) + ∫_a g(t) dt. Par suite, f est de classe C¹ sur V et f' = g. Cela étant vrai au voisinage de tout a ∈ I, c'est vrai sur I (les notions de continuité et de dérivabilité sont des notions locales).
- Enfin, si a est un élément de I et si J est un segment contenant a sur lequel la suite (f'_n) converge uniformément vers g (il en existe par hypothèse), on aura, grâce à l'inégalité triangulaire et à l'inégalité de la moyenne :

$$\forall x \in J, |f_n(x) - f(x)| = \left| (f_n(a) - f(a)) + \left(\int_a^x (f'_n(t) - g(t)) dt \right) \right|$$

$$\leq |f_n(a) - f(a)| + \ell(J) ||f'_n - g||_{\infty}^J$$

en notant $\ell(J)$ la longueur de J.

Ainsi,

$$||f_n - f||_{\infty}^{J} \le |f_n(a) - f(a)| + \ell(J) ||f'_n - g||_{\infty}^{J},$$

- On en déduit, pour tout x ∈ V, f(x) = f(a) + ∫_a g(t) dt. Par suite, f est de classe C¹ sur V et f' = g. Cela étant vrai au voisinage de tout a ∈ I, c'est vrai sur I (les notions de continuité et de dérivabilité sont des notions locales).
- Enfin, si a est un élément de l et si l est un segment contenant a sur lequel la suite (f'_n) converge uniformément vers g (il en existe par hypothèse), on aura, grâce à l'inégalité triangulaire et à l'inégalité de la moyenne :

$$\forall x \in J, |f_n(x) - f(x)| = \left| (f_n(a) - f(a)) + \left(\int_a^x (f'_n(t) - g(t)) dt \right) \right| \\ \leqslant |f_n(a) - f(a)| + \ell(J) ||f'_n - g||_{\infty}^J$$

en notant $\ell(J)$ la longueur de J.

Ainsi,

$$||f_n - f||_{\infty}^{J} \le |f_n(a) - f(a)| + \ell(J) ||f'_n - g||_{\infty}^{J},$$

et puisque la convergence de (f_n') vers g est uniforme sur J, on a $\lim_{n \to +\infty} \|f_n' - g\|_{\infty}^J = 0$ d'où

 $\lim_{n\to +\infty} ||f_n-f||_{\infty}^J = 0$, c'est-à-dire que la suite (f_n) converge uniformément vers f sur J.

- On en déduit, pour tout x ∈ V, f(x) = f(a) + ∫_a g(t) dt. Par suite, f est de classe C¹ sur V et f' = g. Cela étant vrai au voisinage de tout a ∈ I, c'est vrai sur I (les notions de continuité et de dérivabilité sont des notions locales).
- Enfin, si a est un élément de I et si J est un segment contenant a sur lequel la suite (f'_n) converge uniformément vers g (il en existe par hypothèse), on aura, grâce à l'inégalité triangulaire et à l'inégalité de la moyenne :

$$\forall x \in J, |f_n(x) - f(x)| = \left| (f_n(a) - f(a)) + \left(\int_a^x (f'_n(t) - g(t)) dt \right) \right| \\ \leqslant |f_n(a) - f(a)| + \ell(J) ||f'_n - g||_{\infty}^J$$

en notant $\ell(J)$ la longueur de J.

Ainsi,

$$||f_n - f||_{\infty}^J \le |f_n(a) - f(a)| + \ell(J) ||f_n' - g||_{\infty}^J$$

et puisque la convergence de (f_n') vers g est uniforme sur J, on a $\lim_{n\to+\infty}\|f_n'-g\|_\infty^J=0$ d'où

 $\lim_{n \to +\infty} \|f_n - f\|_{\infty}^j = 0$, c'est-à-dire que la suite (f_n) converge uniformément vers f sur J.

Il y a donc bien CVUL de (f_n) vers f.

Corollaire: Suites de fonctions de classe \mathscr{C}^k , $k \geqslant 1$.

Soit (f_n) une suite de fonctions de classe \mathscr{C}^k $(k \in \mathbb{N}^*)$ sur un intervalle I de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- a) Pour tout $j \in [0; k-1]$, la suite de fonctions $(f_n^{(j)})$ converge simplement sur I;
- b) La suite de fonctions $(f_n^{(k)})$ converge simplement sur I vers une fonction g, la convergence étant uniforme locale.

Alors, la fonction $f = \lim_{n \to +\infty} f_n$ est de classe \mathscr{C}^k sur I, on a $f^{(k)} = g$ et pour $j \in [0; k]$, chaque suite $(f_n^{(j)})$ converge uniformément localement vers $f^{(j)}$.

Corollaire: Suites de fonctions de classe \mathscr{C}^k , $k \ge 1$.

Soit (f_n) une suite de fonctions de classe \mathscr{C}^k $(k \in \mathbb{N}^*)$ sur un intervalle l de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- a) Pour tout $j \in [0; k-1]$, la suite de fonctions $(f_n^{(j)})$ converge simplement sur I;
- b) La suite de fonctions $(f_n^{(k)})$ converge simplement sur l vers une fonction g, la convergence étant uniforme locale.

Alors, la fonction $f = \lim_{n \to +\infty} f_n$ est de classe \mathscr{C}^k sur I, on a $f^{(k)} = g$ et pour $j \in [0; k]$, chaque suite $(f_n^{(j)})$ converge uniformément localement vers $f^{(j)}$.

Corollaire: Suites de fonctions de classe \mathscr{C}^{∞} .

Soit (f_n) une suite de fonctions de classe \mathscr{C}^∞ sur un intervalle 1 de \mathbb{R} , à valeurs dans \mathbb{K} . On suppose que :

- a) Pour tout $j \in \mathbb{N}$, la suite de fonctions $(f_n^{(j)})$ converge simplement sur I;
- b) Il existe $p \in \mathbb{N}^*$ tel que, pour tout $k \ge p$, la suite de fonctions $(f_n^{(k)})$ converge simplement sur l, la convergence étant uniforme locale.

Alors, la fonction $f = \lim_{n \to +\infty} f_n$ est de classe \mathscr{C}^{∞} sur I, et pour $j \in \mathbb{N}$, chaque suite $(f_n^{(j)})$ converge uniformément localement vers $f^{(j)}$.

SÉRIES DE FONCTIONS

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'applications d'un intervalle I dans \mathbb{K} . On peut alors considérer la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ définies par :

$$\forall x \in I, S_n(x) = \sum_{k=0}^n u_k(x).$$

Étudier la serie de fonctions $\sum_{n\in\mathbb{N}}u_n$, c'est étudier la suite de fonctions (S_n) .

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'applications d'un intervalle I dans \mathbb{K} . On peut alors considérer la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ définies par :

$$\forall x \in I, S_n(x) = \sum_{k=0}^n u_k(x).$$

Étudier la <u>série de fonctions</u> $\sum_{n\in\mathbb{N}}u_n$, c'est étudier la suite de fonctions (S_n) .

Définition 5

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de fonctions dénies sur un intervalle I à valeurs dans \mathbb{K} .

On dit que la série de fonctions $\sum_{n \in \mathbb{N}} u_n \frac{\text{converge simplement}}{\sum_{n \in \mathbb{N}} u_n} \frac{\text{sur } I \text{ s'il existe une application } S: I \to \mathbb{K}$

telle que la suite de fonctions (S_n) converge simplement sur I vers S.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'applications d'un intervalle I dans \mathbb{K} . On peut alors considérer la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ définies par :

$$\forall x \in I, S_n(x) = \sum_{k=0}^n u_k(x).$$

Étudier la <u>série de fonctions</u> $\sum_{n\in\mathbb{N}}u_n$, c'est étudier la suite de fonctions (S_n) .

Définition 5

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de fonctions dénies sur un intervalle I à valeurs dans \mathbb{K} .

On dit que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge simplement sur l s'il existe une application $S:l\to\mathbb{K}$

telle que la suite de fonctions (S_n) converge simplement sur I vers S.

Cela signifie donc que, pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$, à valeurs dans \mathbb{K} , converge et que

$$S(x) = \sum_{n=0}^{+\infty} u_n(x).$$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite d'applications d'un intervalle I dans \mathbb{K} . On peut alors considérer la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ définies par :

$$\forall x \in I, S_n(x) = \sum_{k=0}^n u_k(x).$$

Étudier la <u>série de fonctions</u> $\sum_{n\in\mathbb{N}}u_n$, c'est étudier la suite de fonctions (S_n) .

Définition 5

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de fonctions dénies sur un intervalle I à valeurs dans \mathbb{K} .

On dit que la série de fonctions $\sum_{n \in \mathbb{N}} u_n$ converge simplement sur I s'il existe une application $S: I \to \mathbb{K}$

telle que la suite de fonctions (S_n) converge simplement sur I vers S.

Cela signifie donc que, pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$, à valeurs dans \mathbb{K} , converge et que

$$S(x) = \sum_{n=0}^{+\infty} u_n(x).$$

S s'appelle alors la $\underline{\text{somme}}$ de la série de fonctions $\sum_{n\in\mathbb{N}}u_n$. On définit également le $\underline{\text{reste d'ordre }n}$

 $R_n = S - S_n = \sum_{k=n+1}^{+\infty} u_k$. La suite de fonctions (R_n) converge simplement sur I vers la fonction nulle.

On dit que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur I s'il existe une application $S\colon I\to\mathbb{K}$ telle que la suite de fonctions (S_n) converge uniformément sur I vers S.

On dit que la série de fonctions $\sum u_n$ converge uniformément sur I s'il existe une application $S: I \to \mathbb{K}$ telle que la suite de fonctions (S_n) converge uniformément sur I vers S.

Théorème 5

La série de fonctions $\sum u_n$ converge uniformément sur I si et seulement si elle converge simplement sur

I et si la suite des restes (R_n) converge uniformément sur I vers la fonction nulle (autrement dit, $\lim_{n\to+\infty}\|R_n\|_{\infty}^I=0).$

$$\lim_{n\to+\infty}\|\kappa_n\|_{\infty}=0).$$

On dit que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur I s'il existe une application $S\colon I\to\mathbb{K}$ telle que la suite de fonctions (S_n) converge uniformément sur I vers S.

Théorème 5

La série de fonctions $\sum\limits_{n\in\mathbb{N}}u_n$ converge uniformément sur I si et seulement si elle converge simplement sur

I et si la suite des restes (R_n) converge uniformément sur I vers la fonction nulle (autrement dit, $\lim_{n \to \infty} ||R_n||^I = 0$)

$$\lim_{n\to+\infty}\|R_n\|_{\infty}^I=0).$$

Démonstration

En effet, si la série converge uniformément sur I, elle converge aussi simplement. On peut alors définir sa somme $S:I\to E$.

On dit que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur I s'il existe une application $S\colon I\to\mathbb{K}$ telle que la suite de fonctions (S_n) converge uniformément sur I vers S.

Théorème 5

La série de fonctions $\sum\limits_{n\in\mathbb{N}}u_n$ converge uniformément sur I si et seulement si elle converge simplement sur

I et si la suite des restes (R_n) converge uniformément sur I vers la fonction nulle (autrement dit, $\lim_{n \to \infty} \|R_n\|^I = 0$).

$$\lim_{n\to+\infty}\|R_n\|_{\infty}^I=0).$$

Démonstration

En effet, si la série converge uniformément sur I, elle converge aussi simplement. On peut alors définir sa somme $S:I\to E$. Par définition de la convergence uniforme de la suite (S_n) des sommes partielles vers S, la suite (R_n) converge uniformément sur I vers la fonction nulle, car

On dit que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur I s'il existe une application $S\colon I\to\mathbb{K}$ telle que la suite de fonctions (S_n) converge uniformément sur I vers S.

Théorème 5

La série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur I si et seulement si elle converge simplement sur

I et si la suite des restes (R_n) converge uniformément sur I vers la fonction nulle (autrement dit,

$$\lim_{n\to+\infty}\|R_n\|_{\infty}^I=0).$$

Démonstration

En effet, si la série converge uniformément sur I, elle converge aussi simplement. On peut alors définir sa somme $S:I\to E$. Par définition de la convergence uniforme de la suite (S_n) des sommes partielles vers S, la suite (R_n) converge uniformément sur I vers la fonction nulle, car

$$\lim_{n\to+\infty} \|R_n\|_{\infty}^I = \lim_{n\to+\infty} \|S - S_n\|_{\infty}^I = 0.$$

On dit que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur I s'il existe une application $S\colon I\to\mathbb{K}$ telle que la suite de fonctions (S_n) converge uniformément sur I vers S.

Théorème 5

La série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur I si et seulement si elle converge simplement sur

I et si la suite des restes (R_n) converge uniformément sur I vers la fonction nulle (autrement dit,

$$\lim_{n\to+\infty}\|R_n\|_{\infty}^I=0).$$

Démonstration

En effet, si la série converge uniformément sur I, elle converge aussi simplement. On peut alors définir sa somme $S:I\to E$. Par définition de la convergence uniforme de la suite (S_n) des sommes partielles vers S, la suite (R_n) converge uniformément sur I vers la fonction nulle, car

$$\lim_{n\to+\infty} \|R_n\|_{\infty}^I = \lim_{n\to+\infty} \|S - S_n\|_{\infty}^I = 0.$$

La réciproque est identique.

On dit que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur I s'il existe une application $S\colon I\to\mathbb{K}$ telle que la suite de fonctions (S_n) converge uniformément sur I vers S.

Théorème 5

La série de fonctions $\sum_{n\in\mathbb{N}} u_n$ converge uniformément sur I si et seulement si elle converge simplement sur

I et si la suite des restes (R_n) converge uniformément sur I vers la fonction nulle (autrement dit,

$$\lim_{n\to+\infty}\|R_n\|_{\infty}^I=0).$$

Démonstration

En effet, si la série converge uniformément sur I, elle converge aussi simplement. On peut alors définir sa somme $S:I\to E$. Par définition de la convergence uniforme de la suite (S_n) des sommes partielles vers S, la suite (R_n) converge uniformément sur I vers la fonction nulle, car

$$\lim_{n\to+\infty} \|R_n\|_{\infty}^I = \lim_{n\to+\infty} \|S - S_n\|_{\infty}^I = 0.$$

La réciproque est identique.

Remarque : Comme pour les suites, on définit de la même manière la notion de **convergence uniforme locale :** lorsqu'il y a convergence uniforme au voisinage de tout point de I, c'est-à-dire si pour tout $a \in I$ il existe un voisinage V de a tel que $\lim_{n \to +\infty} \|R_n\|_{\infty}^V = 0$.

Solution

Convergence simple :

Solution

Convergence simple :

Pour |x|>1, $\frac{x^n}{n^2}$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum_{n\geqslant 1}\frac{x^n}{n^2}$ diverge grossièrement.

Solution

Convergence simple :

Pour |x|>1, $\frac{x^n}{n^2}$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum\limits_{n\geqslant 1}\frac{x^n}{n^2}$ diverge grossièrement.

Si $|x| \le 1$, $\left| \frac{x^n}{n^2} \right| \le \frac{1}{n^2}$ donc la série $\sum_{n \ge 1} \frac{x^n}{n^2}$ est absolument convergente (donc convergente) par comparaison à la série convergente à termes positifs $\sum_{n \ge 1} \frac{1}{n^2}$.

Solution

Convergence simple :

Pour |x|>1, $\frac{x^n}{n^2}$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum\limits_{n\geqslant 1}\frac{x^n}{n^2}$ diverge grossièrement.

Si $|x| \leqslant 1$, $\left|\frac{x^n}{n^2}\right| \leqslant \frac{1}{n^2}$ donc la série $\sum_{n\geqslant 1} \frac{x^n}{n^2}$ est absolument convergente (donc convergente) par comparaison à la série convergente à termes positifs $\sum_{n\geqslant 1} \frac{1}{n^2}$. En conclusion, la série converge simplement sur [-1;1] et on peut donc poser :

$$\forall x \in [-1;1], f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}.$$

Solution

Convergence simple :

Pour |x|>1, $\frac{x^n}{n^2}$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum\limits_{n\geqslant 1}\frac{x^n}{n^2}$ diverge grossièrement.

Si $|x| \leqslant 1$, $\left|\frac{x^n}{n^2}\right| \leqslant \frac{1}{n^2}$ donc la série $\sum_{n\geqslant 1}\frac{x^n}{n^2}$ est absolument convergente (donc convergente) par comparaison à la série convergente à termes positifs $\sum_{n\geqslant 1}\frac{1}{n^2}$. En conclusion, la série converge simplement sur [-1;1] et on peut donc poser :

$$\forall x \in [-1;1], f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}.$$

• Convergence uniforme:

Solution

• Convergence simple :

Pour |x|>1, $\frac{x^n}{n^2}$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum\limits_{n\geqslant 1}\frac{x^n}{n^2}$ diverge grossièrement.

Si $|x| \leqslant 1$, $\left|\frac{x^n}{n^2}\right| \leqslant \frac{1}{n^2}$ donc la série $\sum_{n \geqslant 1} \frac{x^n}{n^2}$ est absolument convergente (donc convergente) par comparaison à la série convergente à termes positifs $\sum_{n \geqslant 1} \frac{1}{n^2}$. En conclusion, la série converge simplement sur [-1;1] et on peut donc poser :

$$\forall x \in [-1;1], f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}.$$

Convergence uniforme :

Pour tout $x \in [-1; 1]$, on a:

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} \frac{x^k}{k^2} \right| \leqslant \sum_{k=n+1}^{+\infty} \frac{|x|^k}{k^2} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

Solution

Convergence simple :

Pour |x|>1, $\frac{x^n}{n^2}$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum\limits_{n\geqslant 1}\frac{x^n}{n^2}$ diverge grossièrement.

Si $|x| \leqslant 1$, $\left|\frac{x^n}{n^2}\right| \leqslant \frac{1}{n^2}$ donc la série $\sum_{n\geqslant 1}\frac{x^n}{n^2}$ est absolument convergente (donc convergente) par comparaison à la série convergente à termes positifs $\sum_{n\geqslant 1}\frac{1}{n^2}$. En conclusion, la série converge simplement sur [-1;1] et on peut donc poser :

$$\forall x \in [-1;1], f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}.$$

Convergence uniforme :

Pour tout $x \in [-1;1]$, on a:

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} \frac{x^k}{k^2} \right| \leqslant \sum_{k=n+1}^{+\infty} \frac{|x|^k}{k^2} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

donc $\|R_n\|_{\infty} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^2} \text{ et } \lim_{n \to +\infty} \|R_n\|_{\infty} = 0$

Exemple 1: Étude de la série de fonctions $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$.

Solution

Convergence simple :

Pour |x|>1, $\frac{x^n}{n^2}$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum_{n\ge 1}\frac{x^n}{n^2}$ diverge grossièrement.

Si $|x| \le 1$, $\left| \frac{x^n}{n^2} \right| \le \frac{1}{n^2}$ donc la série $\sum_{n \ge 1} \frac{x^n}{n^2}$ est absolument convergente (donc convergente) par comparaison à la série convergente à termes positifs $\sum_{n \ge 1} \frac{1}{n^2}$. En conclusion, la série converge simplement sur [-1;1] et on peut donc poser:

$$\forall x \in [-1;1], f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}.$$

Convergence uniforme:

Pour tout $x \in [-1; 1]$, on a:

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} \frac{x^k}{k^2} \right| \leqslant \sum_{k=n+1}^{+\infty} \frac{|x|^k}{k^2} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

donc $||R_n||_{\infty} \leqslant \sum_{k=1}^{+\infty} \frac{1}{k^2}$ et $\lim_{n \to +\infty} ||R_n||_{\infty} = 0$ puisque $\sum_{k=1}^{+\infty} \frac{1}{k^2}$ est le reste d'une série numérique convergente.

Exemple 1: Étude de la série de fonctions $\sum_{n=1}^{\infty} \frac{x}{n^2}$.

Solution

Convergence simple :

Pour |x|>1, $\frac{x^n}{n^2}$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum_{n\ge 1}\frac{x^n}{n^2}$ diverge grossièrement.

Si $|x| \le 1$, $\left| \frac{x^n}{n^2} \right| \le \frac{1}{n^2}$ donc la série $\sum_{n \ge 1} \frac{x^n}{n^2}$ est absolument convergente (donc convergente) par comparaison à la série convergente à termes positifs $\sum_{n \ge 1} \frac{1}{n^2}$. En conclusion, la série converge simplement sur [-1;1] et on peut donc poser:

$$\forall x \in [-1;1], f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}.$$

Convergence uniforme:

Pour tout $x \in [-1; 1]$, on a:

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} \frac{x^k}{k^2} \right| \leqslant \sum_{k=n+1}^{+\infty} \frac{|x|^k}{k^2} \leqslant \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

donc $||R_n||_{\infty} \leqslant \sum_{k=1}^{+\infty} \frac{1}{k^2}$ et $\lim_{n \to +\infty} ||R_n||_{\infty} = 0$ puisque $\sum_{k=1}^{+\infty} \frac{1}{k^2}$ est le reste d'une série numérique convergente.

En conclusion, la série de fonctions $\sum_{n} \frac{x^{n}}{p^{2}}$ converge uniformément vers f sur [-1;1].

Solution

• Convergence simple :

Solution

- Convergence simple :
 - Pour tout $n \in \mathbb{N}$, $u_n(0) = 0$ donc $\sum_{n=0}^{+\infty} u_n(0) = 0$.

Solution

- Convergence simple :
 - Pour tout $n \in \mathbb{N}$, $u_n(0) = 0$ donc $\sum_{n=0}^{+\infty} u_n(0) = 0$.
 - Si $x \neq 0$, la série numérique $\sum_{n \geq 0} u_n(x)$ est une série géométrique de raison $\frac{1}{1+x^2} < 1$, donc elle converge, et

sa somme *S* est telle que $S(x) = \frac{x^2}{1 - \frac{1}{1 + x^2}} = 1 + x^2$.

Solution

- Convergence simple :
 - Pour tout $n \in \mathbb{N}$, $u_n(0) = 0$ donc $\sum_{n=0}^{+\infty} u_n(0) = 0$.
 - Si $x \neq 0$, la série numérique $\sum_{n \geq 0} u_n(x)$ est une série géométrique de raison $\frac{1}{1+x^2} < 1$, donc elle converge, et sa somme *S* est telle que $S(x) = \frac{x^2}{1 - \frac{1}{1 - \frac{1}{x^2}}} = 1 + x^2$.

En conclusion, la série de fonctions converge simplement sur \mathbb{R} vers la fonction $S: x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ 1 + x^2 & \text{sinon.} \end{cases}$

Solution

- Convergence simple :
 - Pour tout $n \in \mathbb{N}$, $u_n(0) = 0$ donc $\sum_{n=0}^{+\infty} u_n(0) = 0$.
 - Si $x \neq 0$, la série numérique $\sum_{n \geq 0} u_n(x)$ est une série géométrique de raison $\frac{1}{1+x^2} < 1$, donc elle converge, et sa somme *S* est telle que $S(x) = \frac{x^2}{1 - \frac{1}{1 - \frac{1}{x^2}}} = 1 + x^2$.

En conclusion, la série de fonctions converge simplement sur \mathbb{R} vers la fonction $S: x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ 1 + x^2 & \text{sinon.} \end{cases}$

Convergence uniforme:

Solution

- Convergence simple :
 - Pour tout $n \in \mathbb{N}$, $u_n(0) = 0$ donc $\sum_{n=0}^{+\infty} u_n(0) = 0$.
 - Si $x \neq 0$, la série numérique $\sum_{n \geq 0} u_n(x)$ est une série géométrique de raison $\frac{1}{1+x^2} < 1$, donc elle converge, et sa somme *S* est telle que $S(x) = \frac{x^2}{1 - \frac{1}{1 - \frac{1}{x^2}}} = 1 + x^2$.

En conclusion, la série de fonctions converge simplement sur \mathbb{R} vers la fonction $S: x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ 1 + x^2 & \text{sinon.} \end{cases}$

Convergence uniforme:

Les u_n étant continues, il en est de même des sommes partielles de la série; la fonction limite S n'étant pas continue, il ne peut pas y avoir convergence uniforme sur \mathbb{R} .

Solution

- Convergence simple :
 - Pour tout $n \in \mathbb{N}$, $u_n(0) = 0$ donc $\sum_{n=0}^{+\infty} u_n(0) = 0$.
 - Si $x \neq 0$, la série numérique $\sum_{n \geq 0} u_n(x)$ est une série géométrique de raison $\frac{1}{1+x^2} < 1$, donc elle converge, et sa somme S est telle que $S(x) = \frac{x^2}{1 - \frac{1}{1 - \frac{1}{x^2}}} = 1 + x^2$.

En conclusion, la série de fonctions converge simplement sur \mathbb{R} vers la fonction $S: x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ 1 + x^2 & \text{sinon.} \end{cases}$

Convergence uniforme:

Les u_n étant continues, il en est de même des sommes partielles de la série; la fonction limite S n'étant pas continue, il ne peut pas y avoir convergence uniforme sur \mathbb{R} .

Cependant: il y a convergence uniforme sur toute partie de $\mathbb R$ de la forme $A=]-\infty$; $-a]\cup [a;+\infty[$ avec a>0.

Solution

- Convergence simple :
 - Pour tout $n \in \mathbb{N}$, $u_n(0) = 0$ donc $\sum_{n=0}^{+\infty} u_n(0) = 0$.
 - Si $x \neq 0$, la série numérique $\sum_{n \geq 0} u_n(x)$ est une série géométrique de raison $\frac{1}{1+x^2} < 1$, donc elle converge, et sa somme *S* est telle que $S(x) = \frac{x^2}{1 - \frac{1}{1 - \frac{1}{x^2}}} = 1 + x^2$.

En conclusion, la série de fonctions converge simplement sur \mathbb{R} vers la fonction $S: x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ 1 + x^2 & \text{sinon.} \end{cases}$

Convergence uniforme:

Les u_n étant continues, il en est de même des sommes partielles de la série; la fonction limite S n'étant pas continue, il ne peut pas y avoir convergence uniforme sur \mathbb{R} .

Cependant: il y a convergence uniforme sur toute partie de $\mathbb R$ de la forme $A=]-\infty$; $-a]\cup [a;+\infty[$ avec a > 0. En effet, si $x \neq 0$.

$$R_n(x) = \sum_{k=n+1}^{+\infty} \frac{x^2}{(x^2+1)^k} = \frac{x^2}{(x^2+1)^{n+1}} \frac{1}{1 - \frac{1}{x^2+1}} = \frac{1}{(x^2+1)^n}$$

Solution

- Convergence simple :
 - Pour tout $n \in \mathbb{N}$, $u_n(0) = 0$ donc $\sum_{n=0}^{+\infty} u_n(0) = 0$.
 - Si $x \neq 0$, la série numérique $\sum_{n \geq 0} u_n(x)$ est une série géométrique de raison $\frac{1}{1+x^2} < 1$, donc elle converge, et sa somme *S* est telle que $S(x) = \frac{x^2}{1 - \frac{1}{1 - \frac{1}{x^2}}} = 1 + x^2$.

En conclusion, la série de fonctions converge simplement sur \mathbb{R} vers la fonction $S: x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ 1 + x^2 & \text{sinon.} \end{cases}$

Convergence uniforme:

Les u_n étant continues, il en est de même des sommes partielles de la série; la fonction limite S n'étant pas continue, il ne peut pas y avoir convergence uniforme sur \mathbb{R} .

Cependant: il y a convergence uniforme sur toute partie de $\mathbb R$ de la forme $A=]-\infty$; $-a]\cup [a;+\infty[$ avec a > 0. En effet, si $x \neq 0$,

$$R_n(x) = \sum_{k=n+1}^{+\infty} \frac{x^2}{(x^2+1)^k} = \frac{x^2}{(x^2+1)^{n+1}} \frac{1}{1 - \frac{1}{x^2+1}} = \frac{1}{(x^2+1)^n}$$

donc $||R_n||_{\infty}^A = \frac{1}{(a^2+1)^n} \xrightarrow[n \to +\infty]{} 0.$

Solution

- Convergence simple :
 - Pour tout $n \in \mathbb{N}$, $u_n(0) = 0$ donc $\sum_{n=0}^{+\infty} u_n(0) = 0$.
 - Si $x \neq 0$, la série numérique $\sum_{n \geqslant 0} u_n(x)$ est une série géométrique de raison $\frac{1}{1+x^2} < 1$, donc elle converge, et sa somme *S* est telle que $S(x) = \frac{x^2}{1 - \frac{1}{1 - \frac{1}{x^2}}} = 1 + x^2$.

En conclusion, la série de fonctions converge simplement sur \mathbb{R} vers la fonction $S: x \mapsto \begin{cases} 0 & \text{si } x = 0 \\ 1 + x^2 & \text{sinon.} \end{cases}$

Convergence uniforme:

Les u_n étant continues, il en est de même des sommes partielles de la série; la fonction limite S n'étant pas continue, il ne peut pas y avoir convergence uniforme sur \mathbb{R} .

Cependant : if y a convergence uniform sur toute partie de \mathbb{R} de la form $A =]-\infty$; $-a] \cup [a; +\infty[$ avec a > 0. En effet, si $x \neq 0$,

$$R_n(x) = \sum_{k=n+1}^{+\infty} \frac{x^2}{(x^2+1)^k} = \frac{x^2}{(x^2+1)^{n+1}} \frac{1}{1 - \frac{1}{x^2+1}} = \frac{1}{(x^2+1)^n}$$

donc $||R_n||_{\infty}^A = \frac{1}{(a^2+1)^n} \xrightarrow[n \to +\infty]{} 0$. On en déduit qu'il y a CVUL sur \mathbb{R}^* .

Définition 7

On dit que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge normalement sur I si :

 \bullet les fonctions u_n sont bornées sur I (au moins à partir d'un certain rang)

Définition 7

On dit que la série de fonctions $\sum_{n\in\mathbb{N}} u_n$ converge normalement sur l si :

- les fonctions u_n sont bornées sur I (au moins à partir d'un certain rang)
- et la série numérique $\sum_{n\geqslant 0}\|u_n\|_{\infty}^I$ est convergente (en notant comme d'habitude :

$$||u_n||_{\infty}^I = \sup_{x \in I} |u_n(x)|$$
).

Définition 7

On dit que la série de fonctions $\sum_{n \in \mathbb{N}} u_n$ converge normalement sur I si :

- les fonctions u_n sont bornées sur I (au moins à partir d'un certain rang)
- et la série numérique $\sum_{n \geq 0} \|u_n\|_{\infty}^I$ est convergente (en notant comme d'habitude :

$$||u_n||_{\infty}^I = \sup_{x \in I} |u_n(x)|$$
).

Remarque: Pour montrer que la série de fonctions $\sum_{n \in \mathbb{N}} u_n$ est normalement convergente, il suffit de

trouver une suite $(\alpha_n)_{n\in\mathbb{N}}$ tel que $\|u_n\|_{\infty}^I \leqslant \alpha_n$ (c'est-à-dire $|u_n(x)| \leqslant \alpha_n$ pour tout $x \in I$), et telle que la série $\sum_{n\in\mathbb{N}} \alpha_n$ converge.

Définition 7

On dit que la série de fonctions $\sum_{n \subset \mathbb{N}} u_n$ <u>converge normalement</u> sur I si :

- les fonctions u_n sont bornées sur I (au moins à partir d'un certain rang)
- ullet et la série numérique $\sum_{n\geqslant 0}\|u_n\|_{\infty}^I$ est convergente (en notant comme d'habitude :

$$||u_n||_{\infty}^I = \sup_{x \in I} |u_n(x)|$$
).

Remarque : Pour montrer que la série de fonctions $\sum_{n \in \mathbb{N}} u_n$ est normalement convergente, il suffit de

trouver une suite $(\alpha_n)_{n\in\mathbb{N}}$ tel que $\|u_n\|_{\infty}^l \leq \alpha_n$ (c'est-à-dire $|u_n(x)| \leq \alpha_n$ pour tout $x \in l$), et telle que la série $\sum_{n\in\mathbb{N}} \alpha_n$ converge.

Théorème 6

Si $(u_n)_{n\in\mathbb{N}}$ est une suite d'applications de l dans \mathbb{K} telle que la série de fonctions $\sum\limits_{n\in\mathbb{N}}u_n$ est normalement convergente sur I, alors :

- Pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente dans \mathbb{K} .
- ② La série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est uniformément convergente sur l.

Si $(u_n)_{n\in\mathbb{N}}$ est une suite d'applications de I dans \mathbb{K} telle que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est normalement convergente sur I, alors :

- **①** Pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente dans \mathbb{K} .
- ② La série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est uniformément convergente sur I.

Si $(u_n)_{n\in\mathbb{N}}$ est une suite d'applications de I dans \mathbb{K} telle que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est normalement convergente sur I, alors:

- Pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente dans \mathbb{K} .
- **2** La série de fonctions $\sum_{n\in\mathbb{N}} u_n$ est uniformément convergente sur I.

Démonstration

Supposons donc $\sum_{n \in \mathbb{N}} \|u_n\|_{\infty}^I$ convergente.

Si $(u_n)_{n\in\mathbb{N}}$ est une suite d'applications de I dans \mathbb{K} telle que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est normalement convergente sur I, alors:

- Pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente dans \mathbb{K} .
- 2 La série de fonctions $\sum_{n\in\mathbb{N}} u_n$ est uniformément convergente sur I.

Démonstration

Supposons donc $\sum_{n \in \mathbb{N}} \|u_n\|_{\infty}^I$ convergente.

Puisque, pour tout $x \in I$, $|u_n(x)| \leq ||u_n||_{\infty}^I$, par comparaison de séries à termes positifs, la série $\sum_{n\in\mathbb{N}} |u_n(x)|$ converge.

Si $(u_n)_{n\in\mathbb{N}}$ est une suite d'applications de I dans \mathbb{K} telle que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est normalement convergente sur I, alors :

- **①** Pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente dans \mathbb{K} .
- ② La série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est uniformément convergente sur I.

Démonstration

Supposons donc $\sum_{n\in\mathbb{N}} \|u_n\|_{\infty}^l$ convergente.

Puisque, pour tout $x \in I$, $|u_n(x)| \le \|u_n\|_{\infty}^I$, par comparaison de séries à termes positifs, la série $\sum_{n \in \mathbb{N}} |u_n(x)|$ converge. Cela signifie que la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente.

Si $(u_n)_{n\in\mathbb{N}}$ est une suite d'applications de I dans \mathbb{K} telle que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est normalement convergente sur I, alors:

- **①** Pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente dans \mathbb{K} .
- 2 La série de fonctions $\sum_{n\in\mathbb{N}} u_n$ est uniformément convergente sur I.

Démonstration

Supposons donc $\sum_{n\in\mathbb{N}} \|u_n\|_{\infty}^I$ convergente.

Puisque, pour tout $x \in I$, $|u_n(x)| \leq ||u_n||_{\infty}^I$, par comparaison de séries à termes positifs, la série $\sum_{n\in\mathbb{N}}|u_n(x)|$ converge. Cela signifie que la série $\sum_{n\in\mathbb{N}}u_n(x)$ est absolument convergente. Elle est donc convergente, c'est-à-dire que la série de fonctions $\sum u_n$ converge simplement sur I.

Si $(u_n)_{n\in\mathbb{N}}$ est une suite d'applications de I dans \mathbb{K} telle que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est normalement convergente sur I, alors:

- **①** Pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente dans \mathbb{K} .
- 2 La série de fonctions $\sum_{n\in\mathbb{N}} u_n$ est uniformément convergente sur I.

Démonstration

Supposons donc $\sum_{n\in\mathbb{N}} \|u_n\|_{\infty}^I$ convergente.

Puisque, pour tout $x \in I$, $|u_n(x)| \leq ||u_n||_{\infty}^I$, par comparaison de séries à termes positifs, la série $\sum_{n\in\mathbb{N}}|u_n(x)|$ converge. Cela signifie que la série $\sum_{n\in\mathbb{N}}u_n(x)$ est absolument convergente. Elle est donc convergente, c'est-à-dire que la série de fonctions $\sum u_n$ converge simplement sur I. On aura alors :

Si $(u_n)_{n\in\mathbb{N}}$ est une suite d'applications de I dans \mathbb{K} telle que la série de fonctions $\sum_{n\in\mathbb{N}} u_n$ est normalement convergente sur I, alors :

- **①** Pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente dans \mathbb{K} .
- ② La série de fonctions $\sum_{n\in\mathbb{N}} u_n$ est uniformément convergente sur I.

Démonstration

Supposons donc $\sum_{n\in\mathbb{N}} \|u_n\|_{\infty}^l$ convergente.

Puisque, pour tout $x \in I$, $|u_n(x)| \le \|u_n\|_{\infty}^I$, par comparaison de séries à termes positifs, la série $\sum_{n \in \mathbb{N}} |u_n(x)|$ converge. Cela signifie que la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente. Elle est donc convergente, c'est-à-dire que la série de fonctions $\sum u_n$ converge simplement sur I. On aura alors :

 $n \in \mathbb{N}$

$$\forall x \in I, |R_n(x)| = \left|\sum_{k=n+1}^{+\infty} u_n(x)\right| \leqslant \sum_{k=n+1}^{+\infty} |u_n(x)| \leqslant \sum_{k=n+1}^{+\infty} ||u_n||_{\infty}^{I}$$

Si $(u_n)_{n\in\mathbb{N}}$ est une suite d'applications de I dans \mathbb{K} telle que la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est normalement convergente sur I, alors :

- **①** Pour tout $x \in I$, la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente dans \mathbb{K} .
- ② La série de fonctions $\sum_{n\in\mathbb{N}}u_n$ est uniformément convergente sur I.

Démonstration

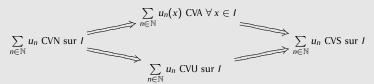
Supposons donc $\sum_{n\in\mathbb{N}} \|u_n\|_{\infty}^l$ convergente.

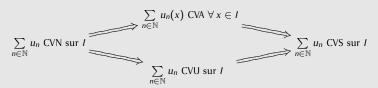
Puisque, pour tout $x \in I$, $|u_n(x)| \le \|u_n\|_{\infty}^I$, par comparaison de séries à termes positifs, la série $\sum_{n \in \mathbb{N}} |u_n(x)|$ converge. Cela signifie que la série $\sum_{n \in \mathbb{N}} u_n(x)$ est absolument convergente. Elle est donc convergente, c'est-à-dire que la série de fonctions $\sum_{n \in \mathbb{N}} u_n$ converge simplement sur I. On aura alors :

$$\forall x \in I, \ |R_n(x)| = \left| \sum_{k=n+1}^{+\infty} u_n(x) \right| \leqslant \sum_{k=n+1}^{+\infty} |u_n(x)| \leqslant \sum_{k=n+1}^{+\infty} ||u_n||_{\infty}^{I}$$

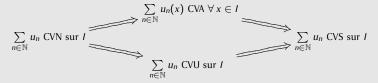
d'où $\|R_n\|_{\infty}^l \leqslant \underbrace{\sum_{k=n+1}^{+\infty} \|u_n\|_{\infty}^l}_{n \to +\infty}$ 0, ce qui prouve la convergence uniforme de la série.

numérique convergente





Exemple 1 : Étude de la série de fonctions $\sum_{n\geqslant 1} \frac{1}{x^2+n^2}$



Exemple 1 : Étude de la série de fonctions $\sum_{n\geqslant 1} \frac{1}{x^2+n^2}$.

Solution

Posons pour tout $x \in \mathbb{R}$, $u_n(x) = \frac{1}{x^2 + n^2}$.

$$\sum_{n\in\mathbb{N}} u_n \text{ CVN sur } I \Longrightarrow_{n\in\mathbb{N}} u_n \text{ CVS sur } I$$

$$\sum_{n\in\mathbb{N}} u_n \text{ CVU sur } I$$

Exemple 1 : Étude de la série de fonctions $\sum_{n\geqslant 1} \frac{1}{x^2+n^2}$.

Solution

Posons pour tout $x \in \mathbb{R}$, $u_n(x) = \frac{1}{x^2 + n^2}$. On a $|u_n(x)| \leqslant \frac{1}{n^2}$ pour tout x, donc $||u_n||_{\infty}^{\mathbb{R}} \leqslant \frac{1}{n^2}$.

ent, on a donc la suite d'implications :
$$\sum_{n\in\mathbb{N}}u_n(x) \text{ CVA } \forall \, x\in I \\ \sum_{n\in\mathbb{N}}u_n \text{ CVN sur } I \\ \sum_{n\in\mathbb{N}}u_n \text{ CVU sur } I$$

Exemple 1 : Étude de la série de fonctions $\sum_{n\geqslant 1} \frac{1}{x^2+n^2}$.

Solution

Posons pour tout $x \in \mathbb{R}$, $u_n(x) = \frac{1}{x^2 + n^2}$. On a $|u_n(x)| \leqslant \frac{1}{n^2}$ pour tout x, donc $||u_n||_{\infty}^{\mathbb{R}} \leqslant \frac{1}{n^2}$.

La série à termes positifs $\sum_{n\geqslant 1}\frac{1}{n^2}$ étant convergente, il résulte du théorème de comparaison des séries à termes positifs que la série $\sum_{n\geqslant 1}\|u_n\|_{\infty}^{\mathbb{R}}$ converge.

$$\sum_{n\in\mathbb{N}} u_n \text{ CVN sur } I$$

$$\sum_{n\in\mathbb{N}} u_n \text{ CVU sur } I$$

$$\sum_{n\in\mathbb{N}} u_n \text{ CVU sur } I$$

Exemple 1 : Étude de la série de fonctions $\sum_{n>1} \frac{1}{x^2 + n^2}$.

Solution

Posons pour tout $x \in \mathbb{R}$, $u_n(x) = \frac{1}{x^2 + x^2}$. On a $|u_n(x)| \leq \frac{1}{x^2}$ pour tout x, donc $||u_n||_{\infty}^{\mathbb{R}} \leq \frac{1}{x^2}$.

La série à termes positifs $\sum_{n\geq 1}\frac{1}{n^2}$ étant convergente, il résulte du théorème de comparaison des séries à termes positifs que la série $\sum_{n \in \mathbb{N}} ||u_n||_{\infty}^{\mathbb{R}}$ converge.

Ainsi, la série $\sum u_n$ est normalement, donc uniformément, convergente sur \mathbb{R} .

Solution

On posera, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{(-1)^{n-1}x^n}{n}$.

Convergence simple :

Solution

On posera, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{(-1)^{n-1}x^n}{n}$.

- Convergence simple :
 - \bullet Pour |x|>1, $u_n(x)$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum\limits_{n\in\mathbb{N}^*}u_n(x)$ diverge grossièrement.

Solution

On posera, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{(-1)^{n-1}x^n}{n}$.

- Convergence simple :
 - Pour |x|>1, $u_n(x)$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum\limits_{n\in\mathbb{N}^*}u_n(x)$ diverge grossièrement.
 - Pour x = 1 la série converge (série harmonique alternée), et pour x = -1, la série diverge (série harmonique).

Solution

On posera, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{(-1)^{n-1}x^n}{n}$.

- Convergence simple :
 - Pour |x|>1, $u_n(x)$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum_{n\in\mathbb{N}^*}u_n(x)$ diverge grossièrement.
 - ullet Pour x=1 la série converge (série harmonique alternée), et pour x=-1, la série diverge (série harmonique).
 - Pour |x| < 1, on a $|u_n(x)| \le |x|^n$. Or la série à termes positifs $\sum_{n \in \mathbb{N}^*} |x|^n$ est une série géométrique de raison |x| < 1, donc convergente.

Exemple 2 (important) : Étude de la série de fonctions $\sum_{i=1}^{n} \frac{(-1)^{n-i} x^{n}}{n}$.

Solution

On posera, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{(-1)^{n-1}x^n}{x^n}$.

- Convergence simple :
 - Pour |x| > 1, $u_n(x)$ ne tend pas vers 0 quand $n \to +\infty$, donc la série $\sum_{n \in \mathbb{N}^*} u_n(x)$ diverge grossièrement.
 - Pour x = 1 la série converge (série harmonique alternée), et pour x = -1, la série diverge (série harmonique).
 - Pour |x| < 1, on a $|u_n(x)| \le |x|^n$. Or la série à termes positifs $\sum_{n \le n \le n} |x|^n$ est une série géométrique de raison

|x| < 1, donc convergente. Les théorèmes de comparaison usuels sur les séries à termes réels positifs assurent alors la convergence absolue, donc la convergence, de la série $\sum_{n\geq 1} u_n(x)$.

Solution

On posera, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{(-1)^{n-1}x^n}{x^n}$.

- Convergence simple :
 - Pour |x|>1, $u_n(x)$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum_{x\in\mathbb{N}^n}u_n(x)$ diverge grossièrement.
 - Pour x = 1 la série converge (série harmonique alternée), et pour x = -1, la série diverge (série harmonique).
 - Pour |x| < 1, on a $|u_n(x)| \le |x|^n$. Or la série à termes positifs $\sum_{n \in \mathbb{N}^*} |x|^n$ est une série géométrique de raison

|x| < 1, donc convergente. Les théorèmes de comparaison usuels sur les séries à termes réels positifs assurent alors la convergence absolue, donc la convergence, de la série $\sum_{n\geq 1} u_n(x)$.

En conclusion : la série converge simplement sur l'intervalle]-1; 1].

Exemple 2 (important) : Étude de la série de fonctions $\sum_{i=1}^{n} \frac{(-1)^{n-i} x^{n}}{n}$.

Solution

On posera, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{(-1)^{n-1}x^n}{x^n}$.

- Convergence simple :
 - Pour |x|>1, $u_n(x)$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum_{x\in\mathbb{N}^n}u_n(x)$ diverge grossièrement.
 - Pour x = 1 la série converge (série harmonique alternée), et pour x = -1, la série diverge (série harmonique).
 - Pour |x| < 1, on a $|u_n(x)| \le |x|^n$. Or la série à termes positifs $\sum_{n \in \mathbb{N}^*} |x|^n$ est une série géométrique de raison |x| < 1, donc convergente. Les théorèmes de comparaison usuels sur les séries à termes réels positifs

assurent alors la convergence absolue, donc la convergence, de la série $\sum_{n\geq 1} u_n(x)$.

En conclusion : la série converge simplement sur l'intervalle]-1; 1].

Convergence normale:

Exemple 2 (important) : Étude de la série de fonctions $\sum_{n\geq 1} \frac{(-1)^{n-1}x^n}{n}$.

Solution

On posera, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{(-1)^{n-1}x^n}{n}$.

- Convergence simple :
 - Pour |x|>1, $u_n(x)$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum_{x\in\mathbb{N}^n}u_n(x)$ diverge grossièrement.
 - Pour x = 1 la série converge (série harmonique alternée), et pour x = -1, la série diverge (série harmonique).
 - Pour |x| < 1, on a $|u_n(x)| \le |x|^n$. Or la série à termes positifs $\sum_{n \in \mathbb{N}^*} |x|^n$ est une série géométrique de raison |x| < 1, donc convergente. Les théorèmes de comparaison usuels sur les séries à termes réels positifs assurent alors la convergence absolue, donc la convergence, de la série $\sum_{n=1}^{\infty} u_n(x)$.

En conclusion : la série converge simplement sur l'intervalle]-1;1].

Convergence normale:

Il n'y a pas convergence normale sur tout l'intervalle]-1; l]. En effet, $||u_n||_{\infty}^{-1:||} = \frac{1}{n}$, et la série $\sum_{n=1}^{\infty} \frac{1}{n}$ diverge!

Exemple 2 (important) : Étude de la série de fonctions $\sum_{n\geq 1} \frac{(-1)^n \cdot x^n}{n}$.

Solution

On posera, pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}^*$, $u_n(x) = \frac{(-1)^{n-1}x^n}{n}$.

- Convergence simple :
 - Pour |x|>1, $u_n(x)$ ne tend pas vers 0 quand $n\to+\infty$, donc la série $\sum_{x\in\mathbb{N}^n}u_n(x)$ diverge grossièrement.
 - Pour x = 1 la série converge (série harmonique alternée), et pour x = -1, la série diverge (série harmonique).
 - Pour |x| < 1, on a $|u_n(x)| \le |x|^n$. Or la série à termes positifs $\sum_{n \in \mathbb{N}^*} |x|^n$ est une série géométrique de raison |x| < 1, donc convergente. Les théorèmes de comparaison usuels sur les séries à termes réels positifs assurent alors la convergence absolue, donc la convergence, de la série $\sum_{n\geq 1} u_n(x)$.

En conclusion : la série converge simplement sur l'intervalle]-1; 1].

Convergence normale:

Il n'y a pas convergence normale sur tout l'intervalle]-1; l]. En effet, $||u_n||_{\infty}^{|-1|\cdot||} = \frac{1}{n}$, et la série $\sum_{n \in \mathbb{N}^*} \frac{1}{n}$ diverge!

Cependant, il y a convergence normale (donc uniforme) sur tout intervalle de la forme [-a; a] avec $0\leqslant a<1$. En effet, $||u_n||_{\infty}^{[-a,a]} = \frac{a^n}{n}$, et la série $\sum_{n \in \mathbb{N}^*} \frac{a^n}{n}$ converge comme il a été vu plus haut.

• Convergence uniforme:

Il n'y a pas convergence normale sur [0;1], mais montrons cependant qu'il y a convergence uniforme sur [0;1].

• Convergence uniforme:

Il n'y a pas convergence normale sur [0;1], mais montrons cependant qu'il y a convergence uniforme sur [0;1].

En effet, en notant $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x) = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1} x^k}{k}$, $R_n(x)$ est le reste d'ordre n d'une série alternée qui vérifie les hypothèses du CSSA (vérification immédiate).

• Convergence uniforme:

Il n'y a pas convergence normale sur [0;1], mais montrons cependant qu'il y a convergence uniforme sur [0;1].

En effet, en notant $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x) = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1} x^k}{k}$, $R_n(x)$ est le reste d'ordre n d'une série alternée qui vérifie les hypothèses du CSSA (vérification immédiate).

On a donc, pour tout $x \in [0;1]$, $|R_n(x)| \leqslant \left|\frac{x^{n+1}}{n+1}\right| \leqslant \frac{1}{n+1}$,

• Convergence uniforme:

Il n'y a pas convergence normale sur [0;1], mais montrons cependant qu'il y a convergence uniforme sur [0;1].

En effet, en notant $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x) = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1} x^k}{k}$, $R_n(x)$ est le reste d'ordre n d'une série alternée qui vérifie les hypothèses du CSSA (vérification immédiate).

On a donc, pour tout $x \in [0;1], |R_n(x)| \leqslant \left| \frac{x^{n+1}}{n+1} \right| \leqslant \frac{1}{n+1}, \text{ donc } ||R_n||_{\infty}^{[0,1]} \leqslant \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0,$

• Convergence uniforme:

Il n'y a pas convergence normale sur [0;1], mais montrons cependant qu'il y a convergence uniforme sur [0;1].

En effet, en notant $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x) = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1} x^k}{k}$, $R_n(x)$ est le reste d'ordre n d'une série alternée qui vérifie les hypothèses du CSSA (vérification immédiate).

On a donc, pour tout $x \in [0;1]$, $|R_n(x)| \le \left|\frac{x^{n+1}}{n+1}\right| \le \frac{1}{n+1}$, donc $||R_n||_{\infty}^{[0;1]} \le \frac{1}{n+1} \xrightarrow{n \to +\infty} 0$, ce qui prouve la convergence uniforme sur [0;1] (on en déduit facilement qu'il y a alors convergence uniforme sur tout intervalle de la forme [a;1] avec $-1 < a \le 0$).

Propriétés de la somme d'une série de fonctions

Le théorème suivant, important, est admis.

Théorème 8: Interversion des limites (ou « théorème de la double limite »).

Soit $\sum_{n\in\mathbb{N}}u_n$ une série de fonctions définies sur I, à valeurs dans \mathbb{K} .

Soit $a \in \overline{I}$ (éventuellement $\pm \infty$). On suppose que, pour tout entier n, la limite $\lim_{\substack{x \to a \\ x \in I}} u_n(x) = \ell_n$ existe, et

que la série $\sum_{n\in\mathbb{N}}u_n$ est uniformément convergente dans un voisinage de a. Notons $S=\sum_{n=0}^{+\infty}u_n$.

Alors:

- La série $\sum_{n\in\mathbb{N}}\ell_n$ converge
- $\lim_{\substack{x \to a \\ x \in I}} S(x) = \sum_{n=0}^{+\infty} \ell_n$ (c'est-à-dire en abrégé : $\lim_a \left(\sum_{n=0}^{+\infty} u_n\right) = \sum_{n=0}^{+\infty} \lim_a u_n$).

Propriétés de la somme d'une série de fonctions

Le théorème suivant, important, est admis.

Théorème 8: Interversion des limites (ou « théorème de la double limite »).

Soit $\sum_{n\in\mathbb{N}} u_n$ une série de fonctions définies sur I, à valeurs dans \mathbb{K} .

Soit $a \in \overline{I}$ (éventuellement $\pm \infty$). On suppose que, pour tout entier n, la limite $\lim_{\substack{x \to a \\ x \in I}} u_n(x) = \ell_n$ existe, et

que la série $\sum\limits_{n\in\mathbb{N}}u_n$ est uniformément convergente dans un voisinage de a. Notons $S=\sum\limits_{n=0}^{+\infty}u_n$.

Alors:

- La série $\sum_{n\in\mathbb{N}}\ell_n$ converge
- $\lim_{\substack{x \to a \\ x \in I}} S(x) = \sum_{n=0}^{+\infty} \ell_n$ (c'est-à-dire en abrégé : $\lim_a \left(\sum_{n=0}^{+\infty} u_n\right) = \sum_{n=0}^{+\infty} \lim_a u_n$).

Les théorèmes qui suivent découlent directement des théorèmes similaires concernant les suites de fonctions (on applique ces théorèmes aux sommes partielles de la série de fonctions).

Soit $\sum u_n$ une série de fonctions définies sur un intervalle I , à valeurs dans \mathbb{K} , telle que la série $\sum u_n$ converge simplement sur I. Soit S sa somme. On suppose que :

- les u_n sont continues en a;
- il existe un voisinage V de a tel que la série $\sum\limits_{n\in\mathbb{N}}u_n$ converge uniformément sur V.

Alors S est continue en a.

Soit $\sum u_n$ une série de fonctions définies sur un intervalle I , à valeurs dans \mathbb{K} , telle que la série $\sum u_n$ converge simplement sur I. Soit S sa somme. On suppose que :

- les u_n sont continues en a;
- il existe un voisinage V de a tel que la série $\sum\limits_{n\in\mathbb{N}}u_n$ converge uniformément sur V.

Alors S est continue en a.

Corollaire:

Soit $\sum_{n\in\mathbb{N}}u_n$ une série de fonctions définies sur un intervalle*I*, à valeurs dans \mathbb{K} .

Si les u_n sont continues sur l et si la série converge uniformément localement sur l, alors sa somme S est continue sur I.

Soit $\sum_{n\in\mathbb{N}} u_n$ une série de fonctions définies sur un intervalle I, à valeurs dans \mathbb{K} , telle que la série $\sum_{n\in\mathbb{N}} u_n$ converge simplement sur I. Soit S sa somme. On suppose que :

- les u_n sont continues en a;
- il existe un voisinage V de a tel que la série $\sum\limits_{n\in\mathbb{N}}u_n$ converge uniformément sur V.

Alors S est continue en a.

Corollaire:

Soit $\sum_{n\in\mathbb{N}}u_n$ une série de fonctions définies sur un intervalle l, à valeurs dans $\mathbb{K}.$

Si les u_n sont continues sur I et si la série **converge uniformément localement sur** I, alors sa somme S est continue sur I.

Démonstration

En effet, pour tout $a \in I$ il existe un voisinage V de a tel que la série $\sum u_n$ converge uniformément sur V. D'après le théorème précédent appliqué sur V, S est continue en a.

Soit $\sum_{n\in\mathbb{N}} u_n$ une série de fonctions définies sur un intervalle I, à valeurs dans \mathbb{K} , telle que la série $\sum_{n\in\mathbb{N}} u_n$ converge simplement sur I. Soit S sa somme. On suppose que :

- les u_n sont continues en a;
- il existe un voisinage V de a tel que la série $\sum\limits_{n\in\mathbb{N}}u_n$ converge uniformément sur V.

Alors S est continue en a.

Corollaire:

Soit $\sum_{n\in\mathbb{N}}u_n$ une série de fonctions définies sur un intervalle I, à valeurs dans \mathbb{K} .

Si les u_n sont continues sur I et si la série **converge uniformément localement sur** I, alors sa somme S est continue sur I.

Démonstration

En effet, pour tout $a \in I$ il existe un voisinage V de a tel que la série $\sum u_n$ converge uniformément sur V. D'après le théorème précédent appliqué sur V, S est continue en a. Ainsi S est continue en tout point de I c'est-à-dire sur I.

Théorème 10: Interversion série-intégrale sur un segment.

- Soit $\sum u_n$ une série de fonctions définies sur **un segment** $[a;b] \subset \mathbb{R}$, à valeurs dans \mathbb{K} .
- On suppose que les u_n sont continues sur [a;b], et que la série $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur
- [a; b]. Notons $S = \sum_{n=0}^{+\infty} u_n$.
- Alors S est continue sur [a;b], la série $\sum_{n \in \mathbb{N}} \int_a^b u_n(t) dt$ converge, et $\int_a^b S(t) dt = \sum_{n \in \mathbb{N}} \int_a^b u_n(t) dt$.

Théorème 10: Interversion série-intégrale sur un segment.

- Soit $\sum u_n$ une série de fonctions définies sur **un segment** $[a;b] \subset \mathbb{R}$, à valeurs dans \mathbb{K} .
- On suppose que les u_n sont continues sur [a;b], et que la série $\sum_{n\in\mathbb{N}}u_n$ converge uniformément sur
- [a; b]. Notons $S = \sum_{n=0}^{+\infty} u_n$.
- Alors S est continue sur [a;b], la série $\sum_{n\in\mathbb{N}}\int_a^b u_n(t)\,\mathrm{d}t$ converge, et $\int_a^b S(t)\,\mathrm{d}t = \sum_{n=0}^{+\infty}\int_a^b u_n(t)\,\mathrm{d}t$.

Remarque: Le théorème s'applique également lorsque les u_n sont seulement continues par morceaux, mais il faut alors vérifier la continuité par morceaux de S, celle-ci n'étant plus assurée par la convergence uniforme.

Théorème II: Dérivation terme à terme

Soit $\sum_{n\in\mathbb{N}}u_n$ une série de fonctions définies sur un intervalle I, à valeurs dans \mathbb{K} .

On suppose que:

- a) les u_n sont de classe \mathscr{C}^1 sur I;
- b) la série de fonctions $\sum_{n\in\mathbb{N}}u_n$ converge simplement sur I; on notera S sa somme;
- c) la série de fonctions $\sum_{n\in\mathbb{N}}u_n'$ converge simplement sur I, la convergence étant uniforme locale sur I.

Théorème 11: Dérivation terme à terme

Soit $\sum u_n$ une série de fonctions définies sur un intervalle I, à valeurs dans \mathbb{K} .

On suppose que:

- a) les u_n sont de classe \mathscr{C}^1 sur I;
- b) la série de fonctions $\sum_{n \in \mathbb{N}} u_n$ converge simplement sur I; on notera S sa somme;
- c) la série de fonctions $\sum_{n\in\mathbb{N}} u'_n$ converge simplement sur I, la convergence étant uniforme locale sur I.

Alors:

- **1** La fonction S est de classe \mathscr{C}^1 sur I;
- ② la série de fonctions $\sum_{n\in\mathbb{N}} u_n$ converge uniformément localement sur I;
- § pour tout $x \in I$, on a : $S'(x) = \sum_{n=0}^{+\infty} u'_n(x)$.

Corollaire: Séries de fonctions de classe \mathscr{C}^k , $k \geqslant 1$.

Soit $\sum_{n\in\mathbb{N}}u_n$ une série de fonctions définies sur un intervalle 1, à valeurs dans $\mathbb{K}.$ On suppose que :

- a) les u_n sont de classe \mathcal{C}^k sur I;
- b) chaque série de fonctions $\sum_{n\in\mathbb{N}}u_n^{(j)}$ pour $j\in [0:k-1]$ converge simplement sur I;
- c) la série de fonctions $\sum_{n\in\mathbb{N}}u_n^{(k)}$ converge simplement sur I, la convergence étant uniforme locale sur I.

Alors la fonction somme S est de classe \mathcal{C}^k sur I, chaque série $\sum u_n^{(j)}$ avec $j \in [0:k]$ converge uniformément localement vers $S^{(j)}$, et :

$$\forall j \in [0; k], \ \forall x \in I, \ S^{(j)}(x) = \sum_{n=0}^{+\infty} u_n^{(j)}(x).$$

Corollaire: Séries de fonctions de classe \mathscr{C}^{∞} .

Soit $\sum_{n\in\mathbb{N}}u_n$ une série de fonctions définies sur un intervalle I, à valeurs dans $\mathbb{K}.$ On suppose que :

- a) les u_n sont de classe \mathscr{C}^{∞} sur I;
- b) pour tout $j \in \mathbb{N}$, la série de fonctions $\sum_{n \in \mathbb{N}} u_n^{(j)}$ converge simplement sur I;
- c) il existe un entier $p \in \mathbb{N}^*$ tel que, pour tout entier $k \geqslant p$ la série de fonctions $\sum_{n \in \mathbb{N}} u_n^{(k)}$ converge simplement sur I, la convergence étant uniforme locale sur I.

Alors : la fonction somme S est de classe \mathscr{C}^{∞} sur I, chaque série $\sum u_n^{(j)}$ avec $j \in \mathbb{N}$ converge uniformément localement vers $S^{(j)}$ et :

$$\forall j \in \mathbb{N} , \ \forall x \in I, \ S^{(j)}(x) = \sum_{n=0}^{+\infty} u_n^{(j)}(x).$$

ÉTUDE COMPLÈTE D'EXEMPLES