CALCUL MATRICIEL

Dans tout le chapitre, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , et p,q,n désignent des entiers naturels non nuls.

I. Matrices

I.1. Définitions

Déf 1:

Une matrice à p lignes et q colonnes (ou de type (p,q)), à coefficients dans \mathbb{K} , est une application

$$A: \left\{ egin{array}{lll} \llbracket 1\,;p \rrbracket \times \llbracket 1\,;q \rrbracket & \longrightarrow & \mathbb{K} \\ (i,j) & \longmapsto & a_{ij} \end{array} \right.$$
 notée :

One matrice a
$$p$$
 lignes et q colonnes (ou de type (p,q)), a coefficients de $A:$

$$A: \begin{cases} \llbracket 1;p\rrbracket \times \llbracket 1;q\rrbracket & \longrightarrow & \mathbb{K} \\ (i,j) & \longmapsto & a_{ij} \end{cases} \text{ notée}:$$

$$A=(a_{ij})_{\substack{1\leqslant i\leqslant p\\1\leqslant j\leqslant q}}=\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1q}\\ a_{21} & a_{22} & \dots & a_{2q}\\ \dots & \dots & \dots & \dots\\ a_{p1} & a_{p2} & \dots & a_{pq} \end{pmatrix}.$$

On notera:

- $\mathcal{M}_{p,q}(\mathbb{K})$ l'ensemble des matrices de type (p,q) à coefficients dans \mathbb{K} .
- $\mathcal{M}_{n,n}(\mathbb{K})$, ensemble des matrices carrées de type (n,n), ou <u>d'ordre n</u>, se note plus simplement

Déf 2:

Soit $A = (a_{ij}) \in \mathcal{M}_{p,q}(\mathbb{K})$. Pour $(i,j) \in [1;p] \times [1;q]$, on appelle :

- $-\underline{j^{\grave{e}me}}$ vecteur colonne de A le vecteur $C_j=(a_{1j},a_{2j},\ldots,a_{pj})\in\mathbb{K}^p$ $-\underline{i^{\grave{e}me}}$ vecteur ligne de A le vecteur $L_i=(a_{i1},a_{i2},\ldots,a_{iq})\in\mathbb{K}^q$.

Déf 3:

- Une matrice de type (1,q) est appelée une matrice ligne.

 Une matrice de type (n,q) est appelée une matrice ligne. Une matrice de type (p,1) est appelée une <u>matrice colonne</u>.

I.2. Matrice d'un système de vecteurs

Déf 4:

Soit F un K-espace vectoriel de dimension p, rapporté à une base $\mathscr{B}_F = (e'_1, \ldots, e'_p)$ et (x_1, \ldots, x_q)

Alors, pour tout $j \in [1;q]$, il existe $(a_{ij})_{1 \le i \le p} \in \mathbb{K}^p$ tels que $x_j = \sum_{i=1}^p a_{ij}e_i'$.

$$A = (a_{ij})_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}} \in \mathcal{M}_{p,q}(\mathbb{K})$$
 s'appelle la matrice des (x_j) dans la base \mathscr{B}_F .

Il s'agit donc de la matrice obtenue en écrivant dans chaque **colonne** les coordonnées dans \mathscr{B}_F des vecteurs de la famille. Cela peut être visualisé ainsi :

$$M_{\mathscr{B}_{F}}(x_{1},...,x_{q}) = \begin{pmatrix}
x_{1} & x_{2} & ... & x_{q} \\
\downarrow & \downarrow & & \downarrow \\
a_{11} & a_{12} & ... & a_{1q} \\
a_{21} & a_{22} & ... & a_{2q} \\
\vdots & \vdots & & \vdots \\
a_{p1} & a_{p2} & ... & a_{pq}
\end{pmatrix} \xrightarrow{\rightarrow e'_{1}} e'_{2}$$

I.3. Matrice d'une application linéaire

Déf 5:

Soit E un \mathbb{K} -espace vectoriel de dimension q, rapporté à une base $\mathscr{B}_E = (e_1, \dots, e_q)$ et F un \mathbb{K} -espace vectoriel de dimension p, rapporté à une base $\mathscr{B}_F = (e'_1, \dots, e'_p)$, et soit $u \in \mathscr{L}(E, F)$.

On appelle matrice de u dans les bases \mathcal{B}_E et \mathcal{B}_F la matrice dans \mathcal{B}_F du système de vecteurs $(u(e_1),\ldots,u(e_q)).$

On la notera $M_{\mathscr{B}_{F}}^{\mathscr{B}_{F}}(u)$ ou $M_{\mathscr{B}_{F},\mathscr{B}_{F}}(u)$ ou $M(u;\mathscr{B}_{E},\mathscr{B}_{F})$.

Ainsi : $\mathbb{M}^{\mathscr{B}_F}_{\mathscr{B}_E}(u)=(a_{ij})\in\mathcal{M}_{p,q}(\mathbb{K})$, où a_{ij} désigne la $i^{\grave{e}me}$ coordonnée de $u(e_j)$ dans la base \mathscr{B}_F soit :

$$\forall j \in [1;q]$$
, $u(e_j) = \sum_{i=1}^{p} a_{ij}e'_i$.

Cette matrice peut être visualisée ainsi :

$$\mathbf{M}_{\mathscr{B}_{E}}^{\mathscr{B}_{F}}(u) = \mathbf{M}_{\mathscr{B}_{F}}(u(\mathscr{B}_{E})) = \begin{pmatrix} u(e_{1}) & u(e_{2}) & \dots & u(e_{q}) \\ \downarrow & \downarrow & & \downarrow \\ a_{11} & a_{12} & \dots & a_{1q} \\ a_{21} & a_{22} & \dots & a_{2q} \\ \vdots & \vdots & & \vdots \\ a_{p1} & a_{p2} & \dots & a_{pq} \end{pmatrix} \xrightarrow{\mathcal{P}_{P}} \overset{\mathcal{P}_{1}'}{\mathcal{P}_{P}}$$

Rem: Il est important de se rappeler que la matrice d'une application linéaire d'un espace vectoriel de dimension q dans un espace vectoriel de dimension p est une matrice de type (p,q)

Prop 1:

L'application $\mathscr{L}(E,F)\longrightarrow \mathcal{M}_{p,q}(\mathbb{K})$ est une bijection de $\mathscr{L}(E,F)$ sur $\mathcal{M}_{p,q}(\mathbb{K})$. $u\longmapsto \ \mathbb{M}_{\mathscr{B}_E}^{\mathscr{B}_F}(u)$ (cette bijection dépend évidemment du choix des bases \mathscr{B}_E et \mathscr{B}_F).

Corollaire 1.1:

Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$.

Alors il existe une et une seule application linéaire $a \in \mathcal{L}(\mathbb{K}^q, \mathbb{K}^p)$ telle que la matrice de a dans les bases canoniques respectives de \mathbb{K}^q et \mathbb{K}^p soit égale à A.

a s'appelle l'application linéaire canoniquement associée à A.

Rem : Quand on parle de la matrice d'une application linéaire, il est indispensable de préciser dans quelles bases.

Dire : « soit A la matrice de u », ou : « soit u l'application linéaire associée à A », sans dire dans quel(s) espace(s) ni dans quelle(s) base(s) on travaille, n'a aucun sens!

I.4. Rang d'une matrice

Déf 6:

Le rang d'une matrice $A \in \mathcal{M}_{p,q}(\mathbb{K})$ est, par définition, le rang de ses vecteurs colonnes (éléments de \mathbb{K}^p). On le note : rg A.

- Si A est la matrice, dans une base \mathscr{B}_F , d'un système de vecteurs (x_1, \ldots, x_q) de F, le rang de A est aussi celui, dans F, du système de vecteurs (x_1, \ldots, x_q) (c'est-à-dire la dimension du sous-espace vectoriel de F engendré par (x_1, \ldots, x_q)).
- Si A est la matrice, dans des bases \mathcal{B}_E et \mathcal{B}_F d'une application linéaire $u \in \mathcal{L}(E,F)$, le rang de A est aussi le rang de u.

En effet, en reprenant les notations précédentes, si $A = M_{\mathscr{B}_E}^{\mathscr{B}_F}(u)$, le rang de u est par définition la dimension de $\operatorname{Im} u$, donc celle de $\operatorname{Vect} \left(u(e_1), \ldots, u(e_q)\right)$, et les coordonnées des vecteurs $u(e_j)$ sont précisément les colonnes de la matrice.

Propriétés:

- **1.** Si $A \in \mathcal{M}_{p,q}(\mathbb{K})$, rg $A \leq \min(p,q)$.
- **2.** Si $A \in \mathcal{M}_{p,q}(\mathbb{K})$ est la matrice dans des base \mathscr{B}_E et \mathscr{B}_F de $u \in \mathscr{L}(E,F)$, alors :

$$\operatorname{rg} A = p \iff u \text{ surjective }, \operatorname{rg} A = q \iff u \text{ injective }$$

II. Opérations sur les matrices

II.1. Addition

Soit E un \mathbb{K} -espace vectoriel de dimension q, rapporté à une base $\mathscr{B}_E = (e_1, \dots, e_q)$ et F un \mathbb{K} -espace vectoriel de dimension p, rapporté à une base $\mathscr{B}_F = (e'_1, \dots, e'_p)$

Soient $A=(a_{ij})$ et $B=(b_{ij})$ deux matrices de $\mathcal{M}_{p,q}(\mathbb{K})$. On peut alors leur associer, de manière unique, deux applications linéaires $u,v\in \mathscr{L}(E,F)$ telles que $A=\mathbb{M}_{\mathscr{B}_F}^{\mathscr{B}_F}(u)$ et $B=\mathbb{M}_{\mathscr{B}_F}^{\mathscr{B}_F}(v)$.

On définit alors la matrice C = A + B par : $C = M_{\mathscr{B}_F}^{\mathscr{B}_F}(u + v)$.

Il est facile de vérifier que $C \in \mathcal{M}_{p,q}(\mathbb{K})$, et que : $\forall (i,j) \in [1;p] \times [1;q]$, $c_{ij} = a_{ij} + b_{ij}$.

II.2. Multiplication externe

Avec les mêmes notations que ci-dessus, si $\lambda \in \mathbb{K}$, on note $\lambda.A$ la matrice : $\lambda.A = \mathbb{M}_{\mathscr{B}_F}^{\mathscr{B}_F}(\lambda u)$.

On a alors : $\lambda.A \in \mathcal{M}_{p,q}(\mathbb{K})$, et $\forall (i,j) \in \llbracket 1;p \rrbracket \times \llbracket 1;q \rrbracket$, $(\lambda.A)_{ij} = \lambda a_{ij}$.

Théorème 1:

Muni des lois précédentes, $(\mathcal{M}_{p,q}(\mathbb{K}),+,.)$ est un \mathbb{K} -espace vectoriel, et l'application

$$\varphi: \left\{ \begin{array}{ccc} \mathscr{L}(E,F) & \longrightarrow & \mathscr{M}_{p,q}(\mathbb{K}) \\ u & \longmapsto & \mathbb{M}_{\mathscr{B}_{F}}^{\mathscr{B}_{F}}(u) \end{array} \right.$$

est un isomorphisme de K-espaces vectoriels.

Remarques

- 1. L'élément neutre pour l'addition dans $\mathcal{M}_{p,q}(\mathbb{K})$ est l'image par φ de l'application linéaire nulle; c'est donc la <u>matrice nulle</u>, dont tous les termes sont nuls, notée $O_{p,q}$, ou plus simplement 0 s'il n'y a pas d'ambiguïté.
- 2. Une base de $\mathcal{M}_{p,q}(\mathbb{K})$ est formée de la famille des matrices $(E_{k\ell})_{(k,\ell)\in [\![1;p]\!]\times [\![1;q]\!]}$, définies par :

 $E_{k\ell}$ est la matrice de type (p,q) dont tous les termes sont nuls sauf celui d'indice (k,ℓ) qui vaut 1.

Ainsi, le terme d'indice (i,j) de $E_{k\ell}$ vaut : $(E_{k\ell})_{ij} = \delta_{ki}\delta_{\ell j}$.

En effet, compte tenu de la définition des lois + et ., il est facile de vérifier que toute matrice $A = (a_{ij}) \in \mathcal{M}_{p,q}(\mathbb{K})$ s'écrit de façon unique sous la forme :

$$A = \sum_{\substack{1 \le i \le p \\ 1 \le j \le q}} a_{ij} E_{ij}.$$

Les coordonnées de A dans cette base sont donc les a_{ij} .

3. On en déduit : $\dim(\mathscr{L}(E,F)) = \dim(\mathcal{M}_{p,q}(\mathbb{K})) = pq$.

Déf 7:

 \searrow La base $(E_{kl})_{(k,l)\in [\![1:p]\!]\times [\![1:q]\!]}$ est appelée base canonique de $\mathcal{M}_{p,q}(\mathbb{K})$.

II.3. Multiplication

Soient G, E, F trois K-espaces vectoriels de dimensions respectives r, q, p, rapportés respectivement à des bases $\mathscr{B}_{G} = (e''_{1}, \dots, e''_{r}), \ \mathscr{B}_{E} = (e_{1}, \dots, e_{q}), \ \mathscr{B}_{F} = (e'_{1}, \dots, e'_{p}).$

Soient:

$$-A \in \mathcal{M}_{p,q}(\mathbb{K})$$
 , et $u \in \mathscr{L}(E,F)$ tq $A = \mathbb{M}_{\mathscr{B}_F}^{\mathscr{B}_F}(u)$,

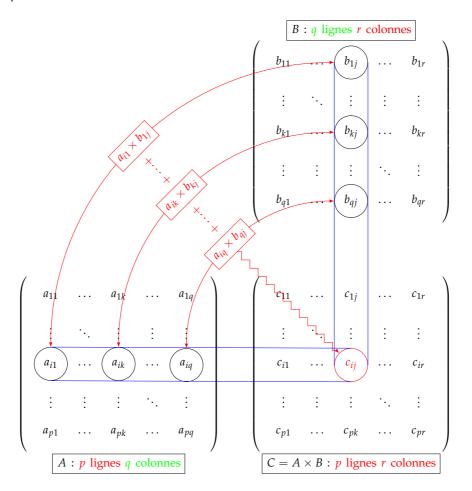
–
$$B\in\mathcal{M}_{q,r}(\mathbb{K})$$
, et $v\in\mathcal{L}(G,E)$ tq $B=\mathbb{M}_{\mathscr{B}_G}^{\mathscr{B}_E}(v)$ et

$$-C \in \mathcal{M}_{p,r}(\mathbb{K})$$
, tq $C = \mathbb{M}_{\mathscr{B}_C}^{\mathscr{B}_F}(u \circ v)$ (avec $u \circ v \in \mathscr{L}(G,F)$).

 $-C \in \mathcal{M}_{p,r}(\mathbb{K}), \text{ tq } C = \mathbb{M}_{\mathscr{B}_{G}}^{\mathscr{B}_{F}}(u \circ v) \text{ (avec } u \circ v \in \mathscr{L}(G,F)).$ Un simple calcul montre alors que : $\forall (i,k) \in \llbracket 1\,;p \rrbracket \times \llbracket 1\,;r \rrbracket \text{ , } c_{ik} = \sum_{j=1}^{q} a_{ij}b_{jk}.$

Par définition, la matrice $C=(c_{ik})_{(i,k)\in [\![1:p]\!]\times [\![1:r]\!]}$ s'appelle le <u>produit</u> de A par B, noté C=AB.

Disposition pratique:



Remarques

- **1.** Cette définition n'a un sens que si A est de type $\underline{(p,q)}$ et B de type $\underline{(q,r)}$. Ainsi, le produit AB peut être défini sans que BA ne le soit.
- **2.** On a par définition : $\mathrm{M}_{\mathscr{B}_{G}}^{\mathscr{B}_{F}}(u \circ v) = \mathrm{M}_{\mathscr{B}_{E}}^{\mathscr{B}_{F}}(u) \times \mathrm{M}_{\mathscr{B}_{G}}^{\mathscr{B}_{E}}(v)$, avec la même base \mathscr{B}_{E} .

Propriétés:

- **1.** Si $A \in \mathcal{M}_{p,q}(\mathbb{K})$, $B \in \mathcal{M}_{q,r}(\mathbb{K})$ et $C \in \mathcal{M}_{r,s}(\mathbb{K})$, alors : A(BC) = (AB)C.
- **2.** Si $A \in \mathcal{M}_{p,q}(\mathbb{K})$ et $B_1, B_2 \in \mathcal{M}_{q,r}(\mathbb{K})$, on a : $A(B_1 + B_2) = AB_1 + AB_2$.
- **3.** Si $A_1, A_2 \in \mathcal{M}_{p,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,r}(\mathbb{K})$, on a : $(A_1 + A_2)B = A_1B + A_2B$.
- **4.** Si $A \in \mathcal{M}_{p,q}(\mathbb{K})$, $B \in \mathcal{M}_{q,r}(\mathbb{K})$ et $\lambda \in \mathbb{K}$, on a : $(\lambda A)B = A(\lambda B) = \lambda(AB)$.
- **5.** Soient $A \in \mathcal{M}_{p,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,r}(\mathbb{K})$. Alors : $\operatorname{rg}(AB) \leq \min(\operatorname{rg} A, \operatorname{rg} B)$.

Prop 2:

Si $(E_{ij})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant i \leqslant q}}$ est la base canonique de $\mathcal{M}_{p,q}(\mathbb{K})$ et $(E'_{k\ell})_{\substack{1 \leqslant k \leqslant q \\ 1 \leqslant \ell \leqslant r}}$ la base canonique de $\mathcal{M}_{q,r}(\mathbb{K})$, on a :

$$\forall (i,j) \in \llbracket 1;p \rrbracket \times \llbracket 1;q \rrbracket , \forall (k,\ell) \in \llbracket 1;q \rrbracket \times \llbracket 1;r \rrbracket : E_{ij}E'_{k\ell} = \delta_{jk}E''_{i\ell}$$

où $(E_{i\ell}'')_{1\leqslant i\leqslant p}$ est la base canonique de $\mathcal{M}_{p,r}(\mathbb{K})$.

II.4. Expression analytique d'une application linéaire

Soient
$$E$$
 un \mathbb{K} -espace vectoriel de dimension q , rapporté à une base $\mathscr{B}_E = (e_1, \dots, e_q)$ F un \mathbb{K} -espace vectoriel de dimension p , rapporté à une base $\mathscr{B}_F = (e'_1, \dots, e'_p)$ $u \in \mathscr{L}(E, F)$ et $A = (a_{ij}) \in \mathcal{M}_{p,q}(\mathbb{K}) = M_{\mathscr{B}_E}^{\mathscr{B}_F}(u)$.

Soit
$$x \in E$$
, $x = \sum_{j=1}^{q} x_j e_j$ et $y = u(x) \in F$, $y = \sum_{i=1}^{p} y_i e'_i$.

Soit enfin X la matrice colonne des coordonnées de x dans $\mathscr{B}_E: X = \begin{pmatrix} x_1 & \dots & x_q \end{pmatrix}^\top \in \mathcal{M}_{q,1}(\mathbb{K})$ et Y la matrice colonne des coordonnées de y dans $\mathscr{B}_F: Y = \begin{pmatrix} y_1 & \dots & y_p \end{pmatrix}^\top \in \mathcal{M}_{p,1}(\mathbb{K})$.

On a alors : $\forall i \in [1; p]$, $y_i = \sum_{j=1}^q a_{ij} x_j$ (expression analytique de u dans les bases \mathscr{B}_E et \mathscr{B}_F) ce qui se traduit matriciellement par : Y = AX.

Rem: Si A est la matrice d'une application linéaire, on peut dire pour simplifier que

- on lit en colonne les coordonnées des images des vecteurs de base;
- et on lit en ligne les coordonnées de l'image d'un vecteur (expression analytique).

Rem: Cas d'une forme linéaire :

Soit E un \mathbb{K} -espace vectoriel de dimension q, rapporté à une base $\mathscr{B}_E = (e_1, \dots, e_q)$ et $\varphi : E \to \mathbb{K}$ une forme linéaire sur E. Sa matrice dans les bases \mathscr{B}_E de E et $\{1\}$ de \mathbb{K} est une matrice ligne, de type $(1,q): A = (a_1 \ a_2 \ \dots \ a_q)$, avec $a_i = \varphi(e_i)$.

Si
$$x = \sum_{j=1}^{q} x_j e_j \in E$$
, on a alors : $\varphi(x) = \sum_{j=1}^{q} a_j x_j$ (expression analytique de φ).

II.5. Image et noyau d'une matrice

Déf 8:

Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$. On définit :

- le noyau de A, noté Ker A; il s'agit de l'ensemble :

$$\operatorname{Ker} A = \left\{ X \in \mathcal{M}_{q,1}(\mathbb{K}) \mid AX = 0 \right\}.$$

- l'image de A, notée Im A; il s'agit de l'ensemble :

$$\operatorname{Im} A = \left\{ AX \mid X \in \mathcal{M}_{q,1}(\mathbb{K}) \right\}.$$

Il est facile de vérifier que Ker A est un sous-espace vectoriel de $\mathcal{M}_{q,1}(\mathbb{K})$ et que Im A est un sous-espace vectoriel de $\mathcal{M}_{p,1}(\mathbb{K})$.

Reprenons toutes les notations précédentes : A est la matrice dans des bases \mathscr{B}_E et \mathscr{B}_F d'une application linéaire $u \in \mathscr{L}(E,F)$, x est un vecteur de E dont la matrice colonne des coordonnées dans \mathscr{B}_E est X, et y est un vecteur de E dont la matrice colonne des coordonnées dans \mathscr{B}_F est Y. Alors :

$$X \in \operatorname{Ker} A \iff x \in \operatorname{Ker} u \quad \text{ et } \quad Y \in \operatorname{Im} A \iff y \in \operatorname{Im} u.$$

Le théorème du rang appliqué à u donne alors : dim $E = \operatorname{rg} u + \operatorname{dim} \operatorname{Ker} u$ donc :

pour
$$A \in \mathcal{M}_{p,q}(\mathbb{K})$$
, $q = \dim \operatorname{Ker} A + \dim \operatorname{Im} A$.

II.6. Matrices par blocs

Déf 9:

Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$. On appelle <u>bloc</u> de A toute matrice $(a_{ij})_{\substack{i \in I \\ j \in J}}$, où I et J sont respectivement des parties de $[\![1\,;p]\!]$ et $[\![1\,;q]\!]$ formées d'entiers *consécutifs*.

(N.B : si on ne suppose plus ces entiers consécutifs, on obtient ce qui est appelé une matrice extraite).

Prop 3:

Soient $A, B \in \mathcal{M}_{p,q}(\mathbb{K})$, décomposées en blocs avec le même découpage :

$$A = \begin{bmatrix} A_{11} & \dots & A_{1j} & \dots & A_{1m} \\ \vdots & & \vdots & & \vdots \\ A_{i1} & \dots & A_{ij} & \dots & A_{im} \\ \vdots & & \vdots & & \vdots \\ A_{\ell 1} & \dots & A_{\ell j} & \dots & A_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & A_{\ell j} & \dots & A_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & A_{\ell j} & \dots & A_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ B_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ B_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ B_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & \ddots & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & & & \vdots & \ddots & \vdots \\ A_{\ell 1} & \dots & B_{\ell j} & \dots & B_{\ell m} \\ \vdots & \dots & \vdots & \dots & \vdots \\ A_{\ell 1} & \dots & A_{\ell m} & \dots & A_{\ell m} \\ \vdots & \dots & \vdots & \dots & \vdots \\ A_{\ell 1} & \dots & A_{\ell m} & \dots & A_{\ell m} \\ \vdots & \dots & \vdots & \dots & \vdots \\ A_{\ell 1} & \dots & A_{\ell m} & \dots & A_{\ell m} \\ \vdots & \dots & \dots & \dots & A_{\ell m} \\ \vdots & \dots & \dots & \dots & A_{\ell m} \\ \vdots & \dots & \dots & \dots & \dots & A_{\ell m} \\ \vdots & \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots & \dots & \dots & \dots \\ \vdots & \dots$$

Alors, si $\lambda \in \mathbb{K}$, la matrice $\lambda A + B$ s'écrit, par blocs :

$$\lambda A + B = \begin{bmatrix} \lambda A_{11} + B_{11} & \dots & \lambda A_{1j} + B_{1j} & \dots & \lambda A_{1m} + B_{1m} \\ \vdots & & \vdots & & \vdots \\ \lambda A_{i1} + B_{i1} & \dots & \lambda A_{ij} + B_{ij} & \dots & \lambda A_{im} + B_{im} \\ \vdots & & \vdots & & \vdots \\ \lambda A_{\ell 1} + B_{\ell 1} & \dots & \lambda A_{\ell j} + B_{\ell j} & \dots & \lambda A_{\ell m} + B_{\ell m} \\ & & & & & & & & \downarrow \\ \lambda A_{\ell 1} + B_{\ell 1} & \dots & \lambda A_{\ell j} + B_{\ell j} & \dots & \lambda A_{\ell m} + B_{\ell m} \\ & & & & & & & \downarrow \\ q_1 & & & & & & & \downarrow \\ q_2 & & & & & & & \downarrow \\ q_3 & & & & & & & \downarrow \\ q_3 & & & & & & & \downarrow \\ q_4 & & & & & & & \downarrow \\ \end{pmatrix} p_1$$

Théorème 2: produit par blocs

Soient $A \in \mathcal{M}_{p,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,r}(\mathbb{K})$, décomposées en blocs compatibles comme suit :

et soit $C = AB \in \mathcal{M}_{p,r}(\mathbb{K})$, décomposée en blocs :

$$C = \begin{bmatrix} C_{11} & \dots & C_{1k} & \dots & C_{1n} \\ \vdots & & \vdots & & \vdots \\ C_{i1} & \dots & C_{ik} & \dots & C_{in} \\ \vdots & & \vdots & & \vdots \\ C_{\ell 1} & \dots & C_{\ell k} & \dots & C_{\ell n} \\ \vdots & & \vdots & & \vdots \\ C_{\ell 1} & \dots & C_{\ell k} & \dots & C_{\ell n} \\ \vdots & & & \ddots & & \vdots \\ \vdots & & & \ddots & & \ddots \\ r_{k} & & & & \ddots & \\ r_{n} & & & & r_{n} \end{bmatrix} \uparrow p_{1}$$

Alors : $\forall (i,k) \in \llbracket 1;\ell \rrbracket \times \llbracket 1;n \rrbracket$, on a : $C_{ik} = \sum_{i=1}^m A_{ij}B_{jk}$.

Cas particulier : écriture par blocs du produit matriciel

Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$, écrite par blocs sous la forme $A = \begin{bmatrix} \vdots \\ L_i \\ \vdots \end{bmatrix}$, chaque L_i étant une matrice ligne de q

éléments, et soit $B \in \mathcal{M}_{q,r}(\mathbb{K})$, écrite par blocs sous la forme $B = [C_1 \ldots C_j \ldots C_r]$, chaque C_j étant une matrice colonne à q éléments.

Alors la matrice C = AB est la matrice de type (p,r) dont le terme d'indice (i,j) vaut $c_{i,j} = L_i C_j$. Illustration:

$$A = \begin{bmatrix} L_1 \\ \vdots \\ L_i \\ \vdots \\ L_p \end{bmatrix} \quad \begin{pmatrix} \vdots \\ \vdots \\ \vdots \\ L_p \end{bmatrix} \quad \begin{pmatrix} \vdots \\ \vdots \\ \vdots \\ L_p \end{bmatrix} = A \times B$$

II.7. Transposition

Déf 10:

Soit $A = (a_{ij})_{\substack{1 \leqslant i \leqslant p \\ 1 \leqslant j \leqslant q}} \in \mathcal{M}_{p,q}(\mathbb{K}).$ On appelle <u>transposée</u> de A la matrice $A^{\top} = (a'_{ji})_{\substack{1 \leqslant j \leqslant q \\ 1 \leqslant i \leqslant p}} \in \mathcal{M}_{q,p}(\mathbb{K})$ définie par :

$$\forall (i,j) \in \llbracket 1;p \rrbracket \times \llbracket 1;q \rrbracket , \ a'_{ji} = a_{ij}.$$

Avant l'adoption regrettable de cette notation anglo-saxonne, la transposée de A était notée : ^tA ; cette notation est celle qui apparaît dans la plupart des anciens énoncés de concours.

Écriture par blocs de la transposée :

Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$, écrite par blocs de lignes sous la forme $A = \begin{bmatrix} \vdots \\ L_i \end{bmatrix}$.

Alors A^{\top} est la matrice écrite par blocs de colonnes : $A^{\top} = \begin{bmatrix} L_1^{\top} & \dots & L_i^{\top} & \dots & L_p^{\top} \end{bmatrix}$

1. Si
$$A \in \mathcal{M}_{p,q}(\mathbb{K})$$
, $(A^{\top})^{\top} = A$ (ou: ${}^t({}^tA) = A$).

2. Si
$$A, B \in \mathcal{M}_{p,q}(\mathbb{K})$$
, $(A+B)^{\top} = A^{\top} + B^{\top}$ (ou: ${}^{t}(A+B) = {}^{t}A + {}^{t}B$).

3. Si
$$A \in \mathcal{M}_{p,q}(\mathbb{K})$$
 et $\lambda \in \mathbb{K}$, $(\lambda A)^{\top} = \lambda A^{\top}$ (ou : ${}^{t}(\lambda A) = \lambda {}^{t}A$).

1. Si
$$A \in \mathcal{M}_{p,q}(\mathbb{K})$$
, $(A + B)^{\top} = A^{\top} + B^{\top}$ (ou : ${}^{t}(A + B) = {}^{t}A + {}^{t}B$).
2. Si $A, B \in \mathcal{M}_{p,q}(\mathbb{K})$, $(A + B)^{\top} = A^{\top} + B^{\top}$ (ou : ${}^{t}(A + B) = {}^{t}A + {}^{t}B$).
3. Si $A \in \mathcal{M}_{p,q}(\mathbb{K})$ et $A \in \mathbb{K}$, $(AA)^{\top} = AA^{\top}$ (ou : ${}^{t}(AA) = A^{t}A$).
4. Si $A \in \mathcal{M}_{p,q}(\mathbb{K})$ et $B \in \mathcal{M}_{q,r}(\mathbb{K})$, $(AB)^{\top} = B^{\top}A^{\top}$ (ou : ${}^{t}(AB) = {}^{t}B^{t}A$).

Prop 5:

L'application : $A \mapsto A^{\top}$ est un isomorphisme du \mathbb{K} -espace vectoriel $\mathcal{M}_{p,q}(\mathbb{K})$ sur le \mathbb{K} -espace vectoriel $\mathcal{M}_{q,p}(\mathbb{K})$.

Prop 6:

Soit
$$A \in \mathcal{M}_{p,q}(\mathbb{K})$$
, écrite par blocs : $A = \begin{bmatrix} A_{11} & \dots & A_{1j} & \dots & A_{1m} \\ \vdots & & \vdots & & \vdots \\ A_{i1} & \dots & A_{ij} & \dots & A_{im} \\ \vdots & & \vdots & & \vdots \\ A_{\ell 1} & \dots & A_{\ell j} & \dots & A_{\ell m} \\ & & & & & & & \uparrow \\ \hline q_1 & & & & & & q_m \\ \hline q & & & & & & & \uparrow \\ \hline \end{pmatrix} \begin{array}{c} p_1 \\ \uparrow \\ p_i \\ \downarrow \\ q_1 & \dots & q_m \\ \hline \end{array}$

Alors la matrice transposée de *A* s'écrit, par blocs :

$$A^{\top} = \begin{bmatrix} A_{11}^{\top} & \dots & A_{i1}^{\top} & \dots & A_{\ell 1}^{\top} \\ \vdots & & \vdots & & \vdots \\ A_{1j}^{\top} & \dots & A_{ij}^{\top} & \dots & A_{\ell j}^{\top} \\ \vdots & & \vdots & & \vdots \\ A_{1m}^{\top} & \dots & A_{im}^{\top} & \dots & A_{\ell m}^{\top} \\ & & & & & & \downarrow \\ p_1 & & & p_i & & p_{\ell} \\ \end{bmatrix} \uparrow q_m$$

III. L'algèbre $\mathcal{M}_n(\mathbb{K})$

Dans $\mathcal{M}_n(\mathbb{K})$, la multiplication des matrices est une loi de composition interne. Les propriétés précédentes sont résumées dans le théorème suivant.

Théorème 3:

 $\mathcal{M}_n(\mathbb{K})$ est une \mathbb{K} -algèbre (non commutative et non intègre dès que $n \ge 2$).

Le terme « K-algèbre » sert à résumer les propriétés suivantes :

- $(\mathcal{M}_n(\mathbb{K}), +, .)$ est un \mathbb{K} -espace vectoriel;
- la multiplication interne des matrices est une loi associative, possédant un élément neutre et distributive à droite et à gauche par rapport à l'addition;
- enfin, on a : $\forall \lambda \in \mathbb{K}$, $\forall (A, B) \in \mathcal{M}_n(\mathbb{K})^2$, $\lambda \cdot (AB) = (\lambda \cdot A)B = A(\lambda \cdot B)$

Rem: Dire que $\mathcal{M}_n(\mathbb{K})$ est *non intègre* signifie que l'on peut trouver des matrices A, B telles que : $A \neq 0, B \neq 0$ et AB = 0.

Cela implique que les éléments de $\mathcal{M}_n(\mathbb{K})$ ne sont pas réguliers en général, c'est-à-dire qu'une égalité de la forme AB = AC n'implique pas toujours B = C.

Déf 11:

Soit *E* un \mathbb{K} -espace vectoriel de dimension *n*, rapporté à une base \mathscr{B}_E , et $u \in \mathscr{L}(E)$.

On appelle matrice de u dans $\mathscr{B}_{\underline{E}}$ la matrice $\mathbb{M}_{\mathscr{B}_{F}}^{\mathscr{B}_{E}}(u)$, notée simplement $\mathbb{M}_{\mathscr{B}_{E}}(u)$ ou $\mathbb{M}(u;\mathscr{B}_{E})$.

Remarques

- **1.** On notera I_n l'élément neutre de l'algèbre $\mathcal{M}_n(\mathbb{K})$ (pour la loi \times). On a alors, pour tout \mathbb{K} -espace vectoriel E de dimension n et toute base \mathscr{B}_E de $E:I_n=\mathbb{M}_{\mathscr{B}_E}(\mathrm{Id}_E)$. I_n est donc la matrice carrée d'ordre n dont tous les éléments sont égaux à 0, sauf ceux de sa diagonale, qui sont égaux à 1.
- **2.** Le \mathbb{K} -espace vectoriel $\mathcal{M}_n(\mathbb{K})$ est de dimension n^2 . Une base en est la *base canonique*, formée des n^2 matrices E_{ij} pour $(i,j) \in [1;n]^2$ définies par :

$$\forall (k,\ell) \in [1;n]^2, (E_{ii})_{k\ell} = \delta_{ik}\delta_{i\ell}.$$

Prop 7 et déf 12 :

On notera $GL_n(\mathbb{K})$ l'ensemble des éléments inversibles de $\mathcal{M}_n(\mathbb{K})$ pour la loi \times . $(GL_n(\mathbb{K}), \times)$ est un groupe (non abélien), appelé groupe linéaire d'ordre n.

En particulier, on a:

Prop 8:

Si
$$A, B \in GL_n(\mathbb{K})$$
, alors $AB \in GL_n(\mathbb{K})$ et: $(AB)^{-1} = B^{-1}A^{-1}$.

Le résultat suivant découle directement du théorème 14 du chapitre II :

Prop 9: invariance du rang par multiplication par une matrice inversible

Soient
$$A \in \mathcal{M}_{p,q}(\mathbb{K})$$
 et $B \in \mathcal{M}_{q,r}(\mathbb{K})$.
Si $p = q$ et $A \in GL_p(\mathbb{K})$, $rg(AB) = rg(B)$, et, si $q = r$ et $B \in GL_q(\mathbb{K})$, $rg(AB) = rg(A)$.

Prop 10:

Soit
$$A \in GL_n(\mathbb{K})$$
. Alors $A^{\top} \in GL_n(\mathbb{K})$ et $(A^{\top})^{-1} = (A^{-1})^{\top}$.

Théorème 4:

Pour une matrice $A \in \mathcal{M}_n(\mathbb{K})$, les propriétés suivantes sont équivalentes :

- (a) A est inversible.
- (b) A est inversible à droite.
- (c) A est inversible à gauche.
- (d) $\operatorname{rg} A = n$.

Prop 11:

Soit $A \in \mathcal{M}_{p,q}(\mathbb{K})$, non nulle.

Si l'on peut extraire de A une matrice carrée inversible d'ordre r, alors rg $A \ge r$.

Rem: La réciproque de la proposition précédente est vraie; elle sera admise.

Corollaire 11.1:

Si
$$A \in \mathcal{M}_{p,q}(\mathbb{K})$$
, $\operatorname{rg} A = \operatorname{rg}(A^{\top})$.

IV. Matrices carrées remarquables

IV.1. Matrices triangulaires

Déf 13:

• Une matrice carrée $A=(a_{ij})\in\mathcal{M}_n(\mathbb{K})$ est dite triangulaire supérieure (resp. <u>inférieure</u>) si :

$$\forall \, (i,j) \in \llbracket 1\,; n \rrbracket^2 \,, \, \left[j < i \,\, \Rightarrow \,\, a_{ij} = 0 \right] \, \left(\,\, \mathrm{resp.} \, \left[j > i \,\, \Rightarrow \,\, a_{ij} = 0 \right] \right) \,.$$

On notera $\mathcal{T}_n^+(\mathbb{K})$ (resp. $\mathcal{T}_n^-(\mathbb{K})$) l'ensemble des matrices triangulaires supérieures (resp. inférieures) d'ordre n.

Il est clair que : $A \in \mathcal{T}_n^+(\mathbb{K}) \iff A^\top \in \mathcal{T}_n^-(\mathbb{K})$.

Théorème 5:

Soit E un \mathbb{K} -espace vectoriel de dimension n, $\mathscr{B}_E = (e_1, \dots, e_n)$ une base de E. Soit $u \in \mathscr{L}(E)$, et $A = M_{\mathscr{B}_F}(u) \in \mathcal{M}_n(\mathbb{K})$.

Alors : A est triangulaire supérieure $\iff \forall j \in [1; n]$, $Vect(e_1, ..., e_j)$ est stable par u.

Théorème 6:

 $\mathcal{T}_n^+(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$, de dimension $\frac{n(n+1)}{2}$.

Le terme « sous-algèbre » signifie que $\mathcal{T}_n^+(\mathbb{K})$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ qui est de plus *stable pour la multiplication interne* et qui contient son élément neutre, I_n .

Remarques

- **1.** $\mathcal{T}_n^-(\mathbb{K})$ est évidemment aussi une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$, isomorphe en tant qu'espace vectoriel à la précédente (par la transposition),
- **2.** Si $A = (a_{ij})$ et $B = (b_{ij})$ sont triangulaires supérieures, alors C = AB, triangulaire supérieure, a pour coefficients diagonaux $c_{ii} = a_{ii}b_{ii}$.

Prop 12:

Soit $A = (a_{ij}) \in \mathcal{T}_n^+(\mathbb{K})$. Alors A est inversible si et seulement si, pour tout $i \in [1; n]$, $a_{ii} \neq 0$; dans ce cas, A^{-1} est une matrice triangulaire supérieure, dont les éléments diagonaux sont les $\frac{1}{a_{ii}}$.

Prop 13:

Soit $A = (a_{ij}) \in \mathcal{T}_n^+(\mathbb{K})$. Alors A est nilpotente si et seulement si, pour tout $i \in [1; n]$, $a_{ii} = 0$.

On dispose d'une sorte de réciproque de ce résultat :

Théorème 7:

Soit E un \mathbb{K} -espace vectoriel de dimension n, et $u \in \mathcal{L}(E)$. u est nilpotent si et seulement si il existe une base \mathscr{B} de E telle que $M_{\mathscr{B}}(u)$ soit triangulaire supérieure à éléments diagonaux nuls.

Rem : Ce théorème sera démontré plus tard...

Pour les 5/2: si u est nilpotent d'indice p, il annule le polynôme X^p qui est scindé, donc u est trigonalisable. Et comme sa seule valeur propre est 0, on a le résultat.

IV.2. Matrices diagonales

Déf 14:

Une matrice carrée $A = (a_{ii}) \in \mathcal{M}_n(\mathbb{K})$ est dite diagonale si et seulement si :

$$\forall (i,j) \in \llbracket 1;n \rrbracket^{2}, j \neq i \Rightarrow a_{ij} = 0.$$

On note alors : $A = diag(a_{11}, a_{22}, ..., a_{nn})$.

On notera $\mathcal{D}_n(\mathbb{K})$ l'ensemble des matrices diagonales d'ordre n.

On a évidemment : $\mathcal{D}_n(\mathbb{K}) = \mathcal{T}_n^+(\mathbb{K}) \cap \mathcal{T}_n^-(\mathbb{K})$.

Prop 14:

 $\mathcal{D}_n(\mathbb{K})$ est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$, de dimension n.

Prop 15:

Soit $A = \operatorname{diag}(a_{11}, \dots, a_{nn}) \in \mathcal{D}_n(\mathbb{K})$. Alors A est inversible si et seulement si pour tout $i \in [1; n]$, $a_{ii} \neq 0$; et dans ce cas, $A^{-1} = \operatorname{diag}\left(\frac{1}{a_{11}}, \dots, \frac{1}{a_{nn}}\right)$.

Prop 16:

Soit $D = \operatorname{diag}(d_{11}, \ldots, d_{nn}) \in \mathcal{D}_n(\mathbb{K})$ dont <u>les éléments diagonaux sont distincts</u>.

Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ commute avec D si et seulement si A est diagonale.

IV.3. Matrices scalaires

Déf 15:

 \searrow Une matrice carrée $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$ est dite <u>scalaire</u> si elle est de la forme diag $(\lambda, \dots, \lambda)$.

Prop 17:

Une matrice carrée A d'ordre n est une matrice scalaire si et seulement si c'est la matrice, dans n'importe quelle base d'un \mathbb{K} -espace vectoriel de dimension n, d'une homothétie.

Prop 18:

L'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ qui commutent avec toutes les autres est exactement l'ensemble des matrices scalaires.

IV.4. Matrices symétriques, antisymétriques

Déf 16:

Une matrice carrée $A = (a_{ij}) \in \mathcal{M}_n(\mathbb{K})$ est dite <u>symétrique</u> (resp. <u>antisymétrique</u>) si $A^{\top} = A$ (resp. $A^{\top} = -A$).

Cela équivaut à : \forall $(i,j) \in \llbracket 1; n \rrbracket^2$, $a_{ji} = a_{ij}$ (resp. $a_{ji} = -a_{ij}$).

On notera $S_n(\mathbb{K})$ l'ensemble des matrices symétriques d'ordre n et $A_n(\mathbb{K})$ l'ensemble des matrices antisymétriques d'ordre n.

Prop 19:

 $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont des sous-espaces vectoriels supplémentaires de $\mathcal{M}_n(\mathbb{K})$, de dimensions respectives $\frac{n(n+1)}{2}$ et $\frac{n(n-1)}{2}$.

IV.5. Matrices par blocs

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$, E_1 et E_2 deux sous-espaces vectoriels *supplémentaires* de E, $\dim(E_1) = p$, $\dim(E_2) = n - p$, \mathscr{B}_1 et \mathscr{B}_2 deux bases de E_1 et E_2 respectivement, et $\mathscr{B} = \mathscr{B}_1 \cup \mathscr{B}_2$, de sorte que \mathscr{B} est une base de E.

Soit $u \in \mathcal{L}(E)$, et $A = \mathcal{M}_{\mathcal{B}}(u)$, écrite par blocs sous la forme :

$$A = \begin{bmatrix} A_1 & B_2 \\ B_1 & A_2 \end{bmatrix} \updownarrow^{p}_{n-p}$$

$$\stackrel{\longleftarrow}{\longleftarrow} \stackrel{\longleftarrow}{\longleftarrow} \stackrel{\longleftarrow}{\longleftarrow}$$

(on remarquera que A_1 et A_2 sont des matrices carrées, que $A_1 = \mathbb{M}_{\mathcal{B}_1}(p_1 \circ u|_{E_1})$ et que $A_2 = \mathbb{M}_{\mathcal{B}_2}(p_2 \circ u|_{E_2})$, où p_1 (resp. p_2) sont les projections sur E_1 (resp. E_2) parallèlement à E_2 (resp. E_1)). On a le résultat important suivant, dont la démonstration est immédiate

Théorème 8:

- **1.** E_1 est stable par $u \iff B_1 = 0$.
- **2.** E_2 est stable par $u \iff B_2 = 0$.

Déf 17:

- **1.** Ainsi, si E_1 est stable par u, A est de la forme : $\begin{bmatrix} A_1 & B_2 \\ 0 & A_2 \end{bmatrix}$. Une telle matrice est dite triangulaire supérieure par blocs. A_1 est alors la matrice dans \mathcal{B}_1 de l'endomorphisme induit par u sur E_1 .
- **2.** Si E_1 et E_2 sont stables par u, A est de la forme $\begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}$. Une telle matrice est dite diagonale par blocs. A_1 et A_2 sont alors les matrices dans les bases \mathcal{B}_i des endomorphismes induits u_{E_1} et u_{E_2} .

Prop 20:

L'ensemble des matrices de la forme $\begin{bmatrix} A_1 & B_2 \\ 0 & A_2 \end{bmatrix} \stackrel{p}{\uparrow}_{n-p}$ est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$, stable par multiplication.

Prop 21:

Et, dans ce cas,
$$A^{-1}$$
 est de la forme : $A^{-1} = \begin{bmatrix} A_1^{-1} & B_2' \\ 0 & A_2^{-1} \\ \downarrow p \rightarrow & \overleftarrow{n-p} \end{bmatrix} \uparrow^p \stackrel{n-p}{\uparrow}$

$$A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix} \text{ est inversible si et seulement si } A_1 \text{ et } A_2 \text{ le sont.}$$
Et, dans ce cas, A^{-1} est égale à : $A^{-1} = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & A_2^{-1} \end{bmatrix}$.

Et, dans ce cas,
$$A^{-1}$$
 est égale à : $A^{-1} = \begin{bmatrix} A_1^{-1} & 0 \\ 0 & A_2^{-1} \end{bmatrix}$.

Rem: Les résultats ci-dessus se généralisent sans difficulté aux cas des matrices triangulaires supérieures

par blocs, de la forme :
$$\begin{bmatrix} A_{11} & \dots & A_{1n} \\ & \ddots & \vdots \\ \mathbf{0} & & & \\ & & A_{nn} \end{bmatrix}$$
, où les A_{ii} sont des matrices *carrées*,

et aux matrices diagonales par blocs de la forme
$$\begin{bmatrix} A_{11} & & 0 \\ & \ddots & \\ 0 & & A_{nn} \end{bmatrix}$$
 .

V. Changements de base

V.1. Matrices de passage

Déf 18:

Soit E un \mathbb{K} -espace vectoriel de dimension n, et $\mathscr{B}=(e_1,\ldots,e_n)$ et $\mathscr{B}'=(e_1',\ldots,e_n')$ deux bases de

On appelle matrice de passage de \mathscr{B} à \mathscr{B}' la matrice du système (e'_1,\ldots,e'_n) dans la base \mathscr{B} .

On la note $\mathbb{P}_{\mathscr{B}}^{\mathscr{B}'}$ ou $\mathbb{P}_{\mathscr{B},\mathscr{B}'}$.

Ainsi, la j-ème colonne de $\mathbb{P}_{\mathscr{B}}^{\mathscr{B}'}$ est formée des coordonnées de e'_j dans \mathscr{B} .

Interprétations:

- $\mathbb{P}^{\mathscr{B}'}_{\mathscr{B}}$ est aussi la matrice dans la base \mathscr{B} de l'endomorphisme u de E défini par : $\forall i \in [\![1\,;n]\!]$, $u(e_i)=e_i'$.
- $\mathbb{P}_{\mathscr{B}}^{\mathscr{B}'}$ est aussi la matrice, dans les bases \mathscr{B}' et \mathscr{B} , de l'application Id_E , c'est-à-dire $\mathrm{M}_{\mathscr{B}'}^{\mathscr{B}}(\mathrm{Id}_E)$.

Prop 22:

1. Si \mathscr{B} , \mathscr{B}' et \mathscr{B}'' sont trois bases de E, on a : $\mathbb{P}_{\mathscr{B}}^{\mathscr{B}''} \ = \ \mathbb{P}_{\mathscr{B}}^{\mathscr{B}'} \times \, \mathbb{P}_{\mathscr{B}'}^{\mathscr{B}''}$

$$P_{\mathscr{B}}^{\mathscr{B}''} = P_{\mathscr{B}}^{\mathscr{B}'} \times P_{\mathscr{B}}^{\mathscr{B}}$$

2. $P_{\mathscr{B}}^{\mathscr{B}'}$ est inversible et $\left(P_{\mathscr{B}}^{\mathscr{B}'}\right)^{-1} = P_{\mathscr{B}'}^{\mathscr{B}}$.

V.2. Formules de changement de bases

Prop 23:

Soit E un \mathbb{K} -espace vectoriel de dimension n, \mathscr{B} et \mathscr{B}' deux bases de E, et P la matrice de passage

Soit x un vecteur de E, X la matrice colonne de ses coordonnées dans \mathscr{B} et X' celle de ses coordonnées dans \mathscr{B}' .

On a alors la relation:

$$X = PX'$$
 ou encore $M_{\mathscr{B}}(x) = P_{\mathscr{B}}^{\mathscr{B}'} M_{\mathscr{B}'}(x)$

Prop 24:

E un \mathbb{K} -espace vectoriel de dimension q, muni de deux bases \mathscr{B}_E et \mathscr{B}_E' . F un \mathbb{K} -espace vectoriel de dimension p, muni de deux bases \mathscr{B}_F et \mathscr{B}_F' . $P \in \mathrm{GL}_q(\mathbb{K})$ la matrice de passage de \mathscr{B}_E à \mathscr{B}_E' $Q \in \mathrm{GL}_p(\mathbb{K})$ la matrice de passage de \mathscr{B}_F à \mathscr{B}_F'

Soit enfin $u \in \mathcal{L}(E,F)$, $A = M_{\mathcal{B}_E}^{\mathcal{B}_F}(u)$ et $A' = M_{\mathcal{B}_E'}^{\mathcal{B}_F'}(u)$ $(A,A' \in \mathcal{M}_{p,q}(\mathbb{K}))$.

On a alors la relation:

$$A' = Q^{-1}AP$$

Corollaire 24.1: Cas d'un endomorphisme :

Soient :
$$E$$
 un \mathbb{K} -espace vectoriel de dimension n , muni de deux bases \mathscr{B}_E et \mathscr{B}_E' . $P \in \mathrm{GL}_n(\mathbb{K})$ la matrice de passage de \mathscr{B}_E à \mathscr{B}_E' $u \in \mathscr{L}(E)$, $A = \mathrm{M}_{\mathscr{B}_E}(u)$ et $A' = \mathrm{M}_{\mathscr{B}_E'}(u)$ $(A, A' \in \mathcal{M}_n(\mathbb{K}))$.

On a alors la relation:

$$A' = P^{-1}AP$$
 ou encore $\mathbb{M}_{\mathscr{B}'}(u) = P^{\mathscr{B}}_{\mathscr{B}'} \, \mathbb{M}_{\mathscr{B}}(u) \, \mathbb{P}^{\mathscr{B}'}_{\mathscr{B}}$

Théorème 9:

Toute matrice $A \in \mathcal{M}_{p,q}(\mathbb{K})$ de rang $r \neq 0$ peut s'écrire sous la forme :

$$A = Q^{-1} J_r P$$

où

$$Q \in GL_p(\mathbb{K})$$
 , $P \in GL_q(\mathbb{K})$ et $J_r = \begin{bmatrix} I_r & 0_{r,q-r} \\ 0_{p-r,r} & 0_{p-r,q-r} \end{bmatrix}$

Rem: D'après la proposition 9 page 10, la réciproque du théorème précédent est vraie : si $A = Q^{-1}J_rP$ avec P et Q inversibles, alors rg $A = \operatorname{rg} J_r = r$.

Corollaire 9.1:

Si
$$A \in \mathcal{M}_{p,q}(\mathbb{K})$$
, $\operatorname{rg} A = \operatorname{rg} A^{\top}$.

V.3. Matrices semblables

Déf 19:

On dit qu'une matrice carrée $A' \in \mathcal{M}_n(\mathbb{K})$ est <u>semblable</u> à la matrice $A \in \mathcal{M}_n(\mathbb{K})$ s'il existe $P \in GL_n(\mathbb{K})$ telle que $A' = P^{-1}AP$.

Cela équivaut à dire que A et A' sont les matrices, dans deux bases différentes, d'un même endomorphisme u d'un espace vectoriel de dimension n.

Rem: On vérifie facilement qu'il s'agit d'une relation d'équivalence dans $\mathcal{M}_n(\mathbb{K})$ (relation réflexive, symétrique et transitive).

Exercice Montrer que la matrice : $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & -4 \\ 0 & 9 & 7 \end{pmatrix}$ est semblable à la matrice : $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

VI. Trace d'une matrice, d'un endomorphisme

Déf 20:

On appelle <u>trace</u> d'une matrice carrée $A=(a_{ij})\in\mathcal{M}_n(\mathbb{K})$ le scalaire :

$$\operatorname{tr} A = \sum_{i=1}^{n} a_{ii}.$$

Théorème 10:

- **1.** L'application $\operatorname{tr}:\mathcal{M}_n(\mathbb{K})\to\mathbb{K}$ est une forme linéaire.
- **2.** $\forall A \in \mathcal{M}_{n,p}(\mathbb{K})$, $\forall B \in \mathcal{M}_{p,n}(\mathbb{K})$, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Rem: Soient $A, B, C \in \mathcal{M}_n(\mathbb{K})$. Le résultat ci-dessus donne, en utilisant l'associativité du produit matriciel :

$$tr(ABC) = tr(BCA) = tr(CAB)$$

mais on n'a pas tr(ABC) = tr(BAC) en général.

$$Ex: \text{ avec } A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \text{ on a } ABC = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \text{ et } BAC = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Théorème 11:

Deux matrices carrées semblables ont même trace.

Déf 21:

- Soit *E* un **K**-espace vectoriel de dimension $n \ge 1$, et $u \in \mathcal{L}(E)$.
- \leq Pour toute base \mathscr{B} de E, le scalaire tr $(M_{\mathscr{B}}(u))$ ne dépend donc pas de la base \mathscr{B} choisie.
- $\mathbf{\xi}$ Ce scalaire s'appelle la <u>trace</u> de l'endomorphisme u, noté tru.

Propriétés:

- **1.** L'application $\operatorname{tr}: \mathscr{L}(E) \to \mathbb{K}$ est une forme linéaire.
- **2.** $\forall u, v \in \mathcal{L}(E)$, $\operatorname{tr}(v \circ u) = \operatorname{tr}(u \circ v)$.

Prop 25:

Soit E un \mathbb{K} -espace vectoriel de dimension n.

- **1.** Si p est un projecteur de E, alors : tr $p = \operatorname{rg} p$.
- **2.** Si E_1 et E_2 sont deux sous-espaces vectoriels supplémentaires de E et si S est la symétrie par rapport à E_1 de direction E_2 , alors : $\operatorname{tr} S = \dim(E_1) \dim(E_2)$.