POLYNÔMES À COEFFICIENTS ±1. PAIRES DE RUDIN-SHAPIRO

Les polynômes étudiés dans ce problème ont été introduits lors de recherches sur la spectroscopie multi-fentes. Ils ont donné lieu à des développements mathématiques en combinatoire, théorie des codes, analyse harmonique, et à de très nombreuses applications en optique, télécommunications, théorie des radars et acoustique.

Soit ℓ un entier au moins égal à 1. Dans ce problème, un vecteur \underline{a} de \mathbb{R}^{ℓ} sera appelé *séquence de longueur* ℓ si chacune de ses ℓ coordonnées vaut 1 ou -1. Les coordonnées d'une séquence \underline{a} de longueur ℓ seront numérotées de 0 à $\ell-1$, $\underline{a}=(a_0,a_1,\ldots,a_{\ell-1})$. On notera \mathscr{S}_{ℓ} l'ensemble des séquences de longueur ℓ . On appellera simplement *séquence*, tout vecteur qui est une séquence de longueur ℓ , pour un certain entier $\ell \geqslant 1$.

On dira que des séquences \underline{a} et \underline{b} forment une paire complémentaire si elles ont même longueur ℓ (qui sera appelée dorénavant longueur de la paire) et si elles vérifient, dans le cas où $\ell > 1$, pour tout entier j tel que $1 \le j \le \ell - 1$, la j-ième condition de corrélation :

$$\sum_{i=0}^{\ell-1-j} (a_i a_{i+j} + b_i b_{i+j}) = 0.$$

Par convention, tout couple de séquences de longueur 1 est une paire complémentaire. Ainsi, pour tout entier $\ell \geqslant 1$, la complémentarité d'une paire de longueur ℓ implique-t-elle $\ell-1$ conditions de corrélation.

Première partie

On désigne par $\mathscr L$ l'ensemble des entiers ℓ pour lesquels il existe au moins une paire complémentaire de longueur ℓ . Autrement dit, $\mathscr L$ est l'ensemble des longueurs de paires complémentaires. Dans cette partie, on se propose d'étudier certaines propriétés de l'ensemble $\mathscr L$.

1. Montrer que 2 appartient à $\mathcal L$ et que 3 n'appartient pas à $\mathcal L$.

Soit ℓ un entier au moins égal à 1. Pour toute séquence, $\underline{a}=(a_0,a_1,\ldots,a_{\ell-1})$, de longueur ℓ , on définit le polynôme P_a par la formule

$$P_{\underline{a}}(X) = \sum_{i=0}^{\ell-1} a_i X^i.$$

Un tel polynôme est appelé polynôme séquentiel.

2.a) Soient \underline{a} et \underline{b} des séquences. On considère la fonction définie pour x réel, $x \neq 0$, par

$$x \mapsto P_{\underline{a}}(x)P_{\underline{a}}(x^{-1}) + P_{\underline{b}}(x)P_{\underline{b}}(x^{-1}).$$

Montrer que si \underline{a} et \underline{b} ne sont pas deux séquences de même longueur, cette fonction n'est pas bornée sur $]0,+\infty[$.

Montrer que deux séquences \underline{a} et \underline{b} de même longueur forment une paire complémentaire si et seulement si cette fonction est constante. Exprimer cette constante en fonction de la longueur ℓ de la paire complémentaire \underline{a} , \underline{b} .

- **2.b)** Montrer que si \underline{a} et \underline{b} sont des séquences de même longueur, $P_{\underline{a}}(1)$ et $P_{\underline{b}}(1)$ sont des entiers de même parité. En déduire que tout élément de \mathscr{L} peut s'écrire comme la somme de deux carrés d'entiers.
- **2.c)** Montrer que le complémentaire de \mathcal{L} dans \mathbb{N} est un ensemble infini [on pourra étudier le reste de la division par 4 d'un carré d'entier].
- **3.a)** Soient \underline{a} et \underline{b} des séquences de même longueur. On pose $U = \frac{1}{2}(P_{\underline{a}} + P_{\underline{b}})$ et $V = \frac{1}{2}(P_{\underline{a}} P_{\underline{b}})$. Montrer que \underline{a} et \underline{b} forment une paire complémentairesi et seulement si la fonction

$$x \mapsto U(x)U(x^{-1}) + V(x)V(x^{-1})$$

est constante sur son domaine de définition.

3.b) Les séquences, de longueur 10,

$$a = (1, 1, -1, 1, -1, 1, -1, -1, 1, 1)$$

et

$$b = (1, 1, -1, 1, 1, 1, 1, 1, -1, -1)$$

forment-elles une paire complémentaire?

- **4.** Démontrer, pour toute séquence \underline{v} de longueur paire 2m ($m \in \mathbb{N}$, non nul), l'équivalence des assertions suivantes :
 - (i) 4 divise la somme $v_0 + v_1 + ... + v_{2m-1}$,
 - (ii) le nombre de coordonnées de ν égales à -1 a la même parité que m,
 - (iii) $v_0 v_1 \dots v_{2m-1} = (-1)^m$.
- **5.** Soit $\ell \in \mathcal{L}$, $\ell \geqslant 2$, et soient \underline{a} et \underline{b} des séquences qui forment une paire complémentaire de longueur ℓ . Pour tout entier i, $1 \leqslant i \leqslant \ell 1$, on pose $x_i = a_i b_i$.
- **5.a)** Montrer que, pour tout entier j, $1 \le j \le \ell 1$,

$$\prod_{k=0}^{\ell-1-j} x_k x_{k+j} = (-1)^{\ell-j}$$

[considérer la somme des coordonnées de la séquence $(a_0a_j,\ldots,a_{\ell-1-j}a_{\ell-1},b_0b_j,\ldots,b_{\ell-1-j}b_{\ell-1})$].

5.b) En déduire que, pour tout entier j, $0 \le j \le \ell - 1$,

$$x_i x_{\ell-1-i} = -1.$$

5.c) Montrer que tout élément ℓ de \mathcal{L} , $\ell \geqslant 2$, est pair.

Deuxième partie

Si deux polynômes séquentiels sont associés à des séquences qui forment une paire complémentaire, on dit qu'ils forment une *paire complémentaire de polynômes*. Cette partie est consacrée à l'étude de certaines paires complémentaires de polynômes.

On définit deux suites de polynômes $(P_n)_{n\in\mathbb{N}}$ et $(Q_n)_{n\in\mathbb{N}}$ par les conditions initiales

$$P_0(X) = Q_0(X) = 1$$

et les relations de récurrence

$$P_{n+1}(X) = P_n(X) + X^{2^n}Q_n(X)$$
 (1)

$$Q_{n+1}(X) = P_n(X) - X^{2^n}Q_n(X).$$
 (2)

- **6.a)** Calculer P_1 et Q_1 , puis P_2 et Q_2 .
- **6.b)** Calculer les valeurs respectives de $P_n(1)$, $Q_n(1)$, $P_n(-1)$ et $Q_n(-1)$ en fonction de l'entier n.
 - 7. Démontrer que, pour tout entier positif n, les polynômes P_n et Q_n sont des polynômes séquentiels et qu'ils forment une paire complémentaire. Qu'en déduire vis-à-vis de l'appartenance des entiers de la forme 2^k , pour k entier positif ou nul, à l'ensemble \mathcal{L} ?
 - **8.** Démontrer, pour tout entier positif ou nul n et tout nombre complexe non nul $z \in \mathbb{C}$, l'égalité

$$Q_n(z) = (-1)^n z^{2^n - 1} P_n(-z^{-1}).$$

9.a) Soit T un polynôme quelconque de $\mathbb{C}[X]$, de degré exactement d, $d \ge 1$, qu'on écrit $T(X) = t_0 + t_1 X + \ldots + t_d X^d$ (avec t_d non nul). Montrer que les racines de T sont toutes majorées en module par la quantité $1 + \sup_{0 \le i \le d-1} |t_i/t_d|$.

9.b) Démontrer, pour toute valeur de l'entier n, que toute racine (complexe) z du polynôme P_nQ_n vérifie

$$\frac{1}{2} \leqslant |z| \leqslant 2.$$

Peut-on remplacer chacune de ces deux inégalités larges par une inégalité stricte?

- **10.a)** Montrer qu'il existe une série entière, $S(z) = \sum_{p=0}^{\infty} u_p z^p$, dont les P_n sont des sommes partielles. Identifier son rayon de convergence.
- 10.b) La somme de la série S a-t-elle des zéros dans le disque ouvert de rayon 1/2 centré à l'origine?

 $\mathit{N.B}$: L'ensemble $\mathscr L$ étudié dans ce problème est encore actuellement l'objet de recherches.

