CORRIGÉ : SOUS-ALGÉBRES NILPOTENTES DE $\mathscr{L}(E)$ (extrait de XM' 1996))

Première partie

- I.1 a) Ici l'espace est de dimension 2, donc rgT ≤ 2. Or T n'est ni nul ni inversible (car la composée d'applications bijectives est bijective, donc ne peut être nulle), donc T est de rang 1.
 Alors, d'après le théorème du rang, kerT et ImT sont de dimension 1.
 - **b)** Puisque T est non nul, on a $r \ge 2$. On a $\operatorname{Im} T^{r-1} \subset \operatorname{Im} T$. Puisque T^{r-1} n'est pas nul par définition de r, on a $1 \le \dim \operatorname{Im} T^{r-1} \le \dim \operatorname{Im} T = 1$, donc $\operatorname{Im} T^{r-1} = \operatorname{Im} T$. Or $T^r = TT^{r-1} = 0$ implique $\operatorname{Im} T^{r-1} \subset \operatorname{Ker} T$. Donc $\operatorname{Im} T \subset \operatorname{Ker} T$, d'où l'égalité par l'égalité des dimensions.
 - c) On prend e_2 non nul dans ImT = KerT. Donc il existe e_1 tel que $e_2 = T(e_1)$, et (e_1, e_2) est libre car $e_1 \notin \text{KerT} = \mathbb{K}e_2$. Donc (e_1, e_2) est une base de E et dans cette base, la matrice de T est $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et il est alors clair que $T^2 = 0$ soit r = 2.
- **I.2** Il existe dans \mathscr{A} un élément non nul T. \mathscr{A} étant nilpotente, il existe r > 0 tel que $A^r = 0$, donc d'après la question précédente, il existe une base (e_1, e_2) de E où la matrice de T est $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Si $U \in \mathcal{L}(E)$ est représenté dans cette base par $\begin{pmatrix} 0 & 0 \\ c & 0 \end{pmatrix}$, alors U = cT donc $U \in \mathcal{A}$.

Réciproquement, soit $U \in \mathcal{A}$. Alors $U^2 = 0$ (soit U = 0, soit on applique encore la question précédente). Soit $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ sa matrice dans (e_1, e_2) . Alors $U - cT \in \mathcal{A}$ (\mathcal{A} sous-espace vectoriel de $\mathcal{L}(E)$), donc $(U - cT)^2 = 0$ soit $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}^2 = 0$

Enfin, $U+T \in \mathcal{A}$ donc $0 = (U+T)^2 = U^2 + UT + TU + T^2$, d'où UT+TU=0 soit $\begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & b \\ c & 0 \end{pmatrix} = 0$, ce qui donne b=0.

Finalement, la matrice de U dans la base (e_1, e_2) est bien de la forme voulue.

Deuxième partie

II.1 Pour $x \in E$ on a: $(T(x))_i = P_i(T(x)) = P_i \circ T\left(\sum_j x_j\right) = \sum_j P_i \circ T(x_j)$.

On prend donc $T_{i,j} = P_i \circ T | E_j$ (il s'agit de la restriction à E_i .)

II.2

d'où l'on tire a = d = 0.

$$\begin{split} (\mathrm{ST})_{i,j} &= \mathrm{P}_i \circ \mathrm{ST} \big| \mathrm{E}_j = \mathrm{P}_i \circ \mathrm{S} \circ (\sum_k \mathrm{P}_k) \circ \mathrm{T} \big| \mathrm{E}_j \\ &= \sum_k \mathrm{P}_i \circ \mathrm{S} \circ \mathrm{P}_k \circ \mathrm{T} \big| \mathrm{E}_j \\ &= \sum_k \mathrm{P}_i \circ \mathrm{S} \big| \mathrm{E}_k \circ \mathrm{P}_k \circ \mathrm{T} \big| \mathrm{E}_j \\ &= \sum_k \mathrm{S}_{i,k} \mathrm{T}_{k,j} \end{split} \qquad \text{par d\'efinition des deux tableaux}$$

Rem: il s'agit là d'une démonstration élégante de la formule du produit par blocs...

Troisième partie

- III.1 Si $E_3 = E$ on a à la fois $KerT \supset E$, et $ImT \supset E$ c'est à dire KerT = E, et ImT = E, ce qui contredit le th. du rang. Si $E_3 = \{0\}$, alors $E = KerT \oplus ImT$ et la restriction de T à ImT, supplémentaire du noyau, est un isomorphisme de ImT sur ImT. L'endomorphisme induit par T sur ImT serait alors bijectif, ce qui est exclu car $ImT \neq \{0\}$ et $T^r = 0$.
- III.2 $E_3 = \text{Im T}$ équivaut à $\text{Im T} \subset \text{Ker T}$, soit $T^2 = 0$, c'est-à-dire r = 2 (r = 1 est exclu car $T \neq 0$)

III.3 — Rem: D'après la question précédente, l'hypothèse $r \ge 3$ implique que E_2 n'est pas réduit à $\{0\}$; E_3 n'est pas réduit à $\{0\}$ d'après la question III.1; enfin, E_1 ne peut pas non plus être égal à $\{0\}$ sinon on aurait ImT = E et T serait bijective.

E₁ est un supplémentaire de ImT dans E, donc les images des vecteurs de base ont des projections nulles sur E₁; le premier bloc de lignes de la matrice par blocs est donc nul.

E₃ est inclus dans le noyau, donc tous les vecteurs de E₃ ont des images nulles; le dernier bloc de colonnes de la matrice par blocs est donc nulle.

- \mathbf{T}^k est représenté par une matrice de la forme $\begin{bmatrix} 0 & 0 & 0 \\ ? & \mathbf{T}^k_{2,2} & 0 \\ ? & ? & 0 \end{bmatrix}$ donc $\mathbf{T}^r_{2,2} = 0$: ce bloc est nilpotent.
- Raisonnons alors par récurrence sur n: l'hypothèse de récurrence est

 \mathcal{H}_n : «pour tout endomorphisme nilpotent T d'un \mathbb{K} -espace vectoriel de dimension n E, il existe une base de E où la matrice de T est triangulaire inférieure à éléments diagonaux nuls»

Pour n = 1 c'est immédiat (matrice nulle) et pour n = 2 cela a été fait en I.1.

Supposons \mathcal{H}_d démontrée pour tout d < n et soit $T \neq 0$ nilpotent dans \mathbb{K}^n .

Si T = 0, c'est fini.

Si T est nilpotent d'indice 2, on a vu en III.2 que $E_3 = \operatorname{Im} T$, donc on peut faire une décomposition analogue à celle de III.3, avec E_2 réduit à $\{0\}$, donc de la forme : $\begin{bmatrix} 0 & 0 \\ T_{3,1} & 0 \end{bmatrix}$ qui répond à la question.

Si T est r-nilpotent, avec r > 2, la décomposition faite en III.3 ramène au même problème pour l'endomorphisme de E_2 représenté par $T_{2,2}$, avec E_2 de dimension strictement inférieure à n: on applique l'hypothèse de récurrence : il existe une base de E2 où la matrice de cet endomorphisme est triangulaire inférieure à éléments diagonaux nuls, et la concaténation d'une base de E_1 , de cette nouvelle base de E_2 et d'une base de E_3 donne une base de E où la matrice de T a la forme voulue.

III.4 Montrons par récurrence que la puissance n-ième d'une matrice strictement triangulaire inférieure (ie. triangulaire inférieure à diagonale nulle) d'ordre n est nulle.

Pour n = 1 c'est évident.

Si le résultat est acquis pour toute matrice de ce type de taille n-1, une telle matrice d'ordre n peut s'écrire en blocs de la sorte : $M = \begin{bmatrix} T & 0 \\ L & 0 \end{bmatrix}$, la matrice T étant strictement triangulaire inférieure d'ordre $\leq n-1$, et L étant une matrice ligne. Le produit par blocs donne facilement $M^p = \begin{bmatrix} T^p & 0 \\ LT^{p-1} & 0 \end{bmatrix}$. Avec p = n et l'hypothèse de récurrence, on obtient

Autre méthode possible: examiner l'action de T et de ses puissances successives sur la base canonique. Voit IV.4.c.

Ainsi, $T^n = 0$ d'où par définition de r, $r \le n$.

III.5 Il suffit d'appliquer la méthode précédente. Si (e_1, \dots, e_4) est la base canonique de \mathbb{K}^4 , on a ici KerT = Vect (e_2) et $\operatorname{Im} T = \operatorname{Vect}(e_2, e_3, e_4)$, donc on peut prendre $E_3 = \operatorname{Vect}(e_2)$, $E_2 = \operatorname{Vect}(e_3, e_4)$ et $E_1 = \operatorname{Vect}(e_1)$.

La matrice de T dans la base (e_1, e_3, e_4, e_2) est alors $\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$, et c'est fini!!

Quatrième partie

IV.1 L'ordre de nilpotence valant r, il existe r-1 matrices T_1, \ldots, T_{r-1} appartenant à \mathcal{A} dont le produit $P = A_1 A_2 \cdots A_{r-1}$ n'est pas nul (et $P \in \mathcal{A}$ car \mathcal{A} algèbre), alors que tout produit de r éléments de \mathcal{A} est nul. Donc, pour tout $T \in \mathcal{A}$, PT = 0 d'où $Im T \subset Ker P$. Le noyau de P, différent de E, contient donc $\mathscr{I}(\mathscr{A})$. $\mathscr{I}(\mathscr{A})$ est donc distinct de E.

 E_3 est inclus dans $\mathscr{I}(\mathscr{A})$, il est donc distinct de E.

D'autre part, avec les mêmes notations que ci-dessus, on a pour tout $T \in \mathcal{A}$, TP = 0, donc $Im P \subset Ker T$ et par suite, $\operatorname{Im} P \subset \mathcal{K}(\mathcal{A})$. On a aussi $\operatorname{Im} P \subset \mathcal{I}(\mathcal{A})$ car $P \in \mathcal{A}$, donc $\operatorname{Im} P \subset E_3 \neq \{0\}$ puisque $P \neq 0$.

IV.2 $E_3 = \mathscr{I}(\mathscr{A})$ signifie que $\mathscr{I}(\mathscr{A}) \subset \mathscr{K}(\mathscr{A})$, et que toute image d'élément de \mathscr{A} est incluse dans tous les noyaux des éléments de A. En prenant $T \neq 0 \in \mathcal{A}$, on a donc $Im T \subset Ker T$, d'où r = 2 d'après III.2.

Réciproquement, si r=2, on a UT=0 pour tous $U,T\in \mathcal{A}$, donc $ImT\subset KerU$ pour tous $U,T\in \mathcal{A}$, d'où $\mathscr{I}(\mathscr{A}) \subset \mathscr{K}(\mathscr{A}).$

IV.3 Raisonnons par contraposition, et supposons que, pour tout $(S, U) \in \mathcal{A}^2$, STU = 0.

Alors $\operatorname{Im} U \subset \operatorname{Ker} \operatorname{ST}$ pour tout $U \in \mathcal{A}$, donc $\mathscr{I}(\mathcal{A}) \subset \operatorname{Ker} \operatorname{ST}$, soit $E_2 + E_3 \subset \operatorname{Ker} \operatorname{ST}$ d'où $\operatorname{ST}(E_2) = \{0\}$ (car $\operatorname{ST}(E_3) = \{0\}$ puisque $E_3 \subset \mathcal{K}(\mathcal{A})$). Donc $\operatorname{T}(E_2) \subset \operatorname{Ker} S$, et cela pour tout $S \in \mathcal{A}$ d'où $\operatorname{T}(E_2) \subset \mathcal{K}(\mathcal{A})$. Mais on a aussi évidemment $\operatorname{T}(E_2) \subset \mathscr{I}(\mathcal{A})$ d'où $\operatorname{T}(E_2) \subset \mathscr{I}(\mathcal{A}) \cap \mathcal{K}(\mathcal{A}) = E_3$, ce qui signifie $\operatorname{T}_{22} = \{0\}$.

IV.4 a) Pour commencer, \mathcal{A}_{ij} est bien un espace vectoriel (c'est admis par l'énoncé!) parce que l'application $\mathcal{A} \longrightarrow \mathcal{A}_{ij}$ $T \longmapsto T_{ii}$

est linéaire (transport de structure).

L'écriture du produit par blocs montre facilement que $\mathcal{A}_{2,2}$ est une sous-algèbre nilpotente d'ordre $r' \leqslant r$ (si on fait le produit de deux matrices T et U de la forme indiquée, on obtiendra une matrice de la même forme, avec justement comme bloc au milieu le produit $T_{22}U_{22}$).

Si
$$\mathcal{A}_{22}$$
 est nulle alors les matrices des éléments de \mathcal{A} sont de la forme $T = \begin{bmatrix} 0 & 0 & 0 \\ T_{2,1} & 0 & 0 \\ T_{3,1} & T_{3,2} & 0 \end{bmatrix}$, et on a alors (produit

par blocs) $T^3 = 0$, d'où $r \le 3$ (en fait r = 3 puisque l'énoncé suppose $r \ge 3$).

Réciproquement, si r=3, alors, $\forall (S,T,U) \in \mathcal{A}^2$, STU=0, donc $T_{22}=0$ d'après IV.3. Cela est vrai pour tout $T \in \mathcal{A}$, donc \mathcal{A}_{22} est nulle.

- **b)** On fait une récurrence sur n comme au III.3, répétant la construction ci-dessus sur \mathcal{A}_{22} tant que nécessaire, jusqu'à obtenir une sous-algèbre nulle, ou vérifiant $r \le 2$ (cas où $E_2 = \{0\}$)
- c) On pourrait raisonner comme dans III.4, et démontrer $r \le n$ par récurrence sur n en faisant des produits par blocs. Mais changeons un peu de méthode (celle suggérée à la fin de III.4).

Considérons n matrices T_i écrites dans la base $(\varepsilon_i)_{1 \le i \le n}$ construite dans la question précédente, strictement triangulaires inférieures.

Pour tout $k \in [1, n]$, notons $G_k = \text{Vect}(\{\varepsilon_k, ..., \varepsilon_n\})$ et $G_{n+1} = \{0\}$. Nous avons donc $T_i(G_k) \subset G_{k+1}$. Il en résulte que $T_1T_2...T_i(G_k) \subset G_{k+i}$, et enfin $T_1T_2...T_n(G_k) = \{0\}$, donc $r \le n$.

- **IV.5** *Note*: Le rôle de l'hypothèse $r \ge 4$ est dissimulé dans ce qui suit : il faut que, lorsque dans un produit de r-1 éléments on supprime le premier et le dernier, il reste au moins un terme, c'est à dire $r-1 \ge 3$.
 - Montrons d'abord $r' \le r-2$. Par définition de r', il existe r'-1 éléments de \mathscr{A}_{22} dont le produit n'est pas nul, donc r'-1 éléments $T_1, \ldots, T_{r'-1}$ de \mathscr{A} tels que $(T_1 \cdots T_{r'-1})_{22} = (T_1)_{22} \cdots (T_{r'-1})_{22} \neq 0$. D'après IV.3, il existe S et U dans \mathscr{A} tels que $ST_1 \cdots T_{r'-1}U \neq 0$. On a donc le produit de r'+1 éléments de \mathscr{A} qui est non nul, d'où $r'+1 \le r-1$ et $r' \le r-2$.
 - Ensuite, par définition de r, il existe r-1 éléments T_1, \ldots, T_{r-1} de \mathscr{A} dont le produit n'est pas nul. Donc, en appliquent de nouveau le résultat de IV.3, avec $S=T_1$, $U=T_{r-1}$ et $T=T_2\cdots T_{r-2}$, on a $(T_2)_{22}\cdots (T_{r-2})_{22}\neq 0$, donc $r-3\leqslant r'-1$ soit $r'\geqslant r-2$.

* * * * * * * * *