SOUS-ESPACES DE $\mathbb{M}_n(\mathbb{R})$ DONT LES ÉLÉMENTS ONT UN RANG MAJORÉ

Soit n un entier supérieur ou égal à 2, et $r \in [1, n-1]$. L'objet du problème est l'étude des sous-espaces vectoriels V de $\mathbb{M}_n(\mathbb{R})$ dont tous les éléments sont de rang $\leq r$. La première partie établit divers résultats utiles pour la suite; dans la seconde, on majore la dimension de V par nr, et dans la troisième, on caractérise les sous-espaces V de dimension nr.

On identifiera \mathbb{R}^n et $\mathbb{M}_{n,1}(\mathbb{R})$. On identifiera également une matrice $A \in \mathbb{M}_n(\mathbb{R})$ avec l'endomorphisme de \mathbb{R}^n qui lui est canoniquement associé. Ainsi, on pourra noter :

$$\operatorname{Ker} A = \{X \in \mathbb{M}_{n,1}(\mathbb{R}) \text{ tq } AX = 0\} \text{ et } \operatorname{Im} A = \{AX \text{ tq } X \in \mathbb{M}_{n,1}(\mathbb{R})\}.$$

A - Résultats préliminaires

Les questions de cette partie sont indépendantes entre elles. Les résultats obtenus et les notations introduites seront utilisées dans la suite du problème.

- **A.1** a) Soit $X \in \mathbb{M}_{n,1}(\mathbb{R})$. Montrer que $^tXX = 0$ si et seulement si X = 0.
 - **b)** Soit $M \in M_n(\mathbb{R})$. Montrer que $Ker(M) = Ker(^tMM)$.
- **A.2** Soient $A \in GL_r(\mathbb{R})$, $B \in \mathbb{M}_{r,n-r}(\mathbb{R})$, $C \in \mathbb{M}_{n-r,r}(\mathbb{R})$ et $D \in \mathbb{M}_{n-r}(\mathbb{R})$. On définit la matrice M par sa représentation par blocs

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

a) Soient $X \in M_{r,1}(\mathbb{R})$ et $Y \in M_{n-r,1}(\mathbb{R})$. On considère le vecteur colonne $Z = \begin{bmatrix} X \\ Y \end{bmatrix}$.

Écrire les relations entre A B, C, D, X et Y traduisant l'appartenance de Z à Ker(M), sous la forme X = SY et TY = 0, où S et T sont deux matrices à déterminer.

- **b)** Montrer que les espaces Ker(M) et Ker(D CA⁻¹B) ont même dimension.
- c) Montrer que $rg(M) \ge r$.

Montrer que rg(M) = r si et seulement si $D = CA^{-1}B$.

A.3 Démontrer que l'ensemble

$$W_r = \left\{ \begin{bmatrix} 0 & B \\ {}^t B & A \end{bmatrix} \text{ tq } A \in \mathbb{M}_{n-r}(\mathbb{R}) \text{ et } B \in \mathbb{M}_{r,n-r}(\mathbb{R}) \right\}.$$

est un sous-espace vectoriel de $\mathbb{M}_n(\mathbb{R})$ et en déterminer la dimension.

A.4 a) Démontrer que l'ensemble

$$W'_r = \left\{ \begin{bmatrix} 0 & B \\ {}^tC & 0 \end{bmatrix} \text{ tq } B, C \in \mathbb{M}_{r,n-r}(\mathbb{R}) \right\}.$$

est un sous-espace vectoriel de $\mathbb{M}_n(\mathbb{R})$ et en déterminer la dimension.

b) Soient M_1, M_2 deux éléments de W'_r :

$$\mathbf{M}_1 = \begin{bmatrix} 0 & \mathbf{B}_1 \\ {}^t\mathbf{C}_1 & \mathbf{0} \end{bmatrix} \qquad \begin{bmatrix} 0 & \mathbf{B}_2 \\ {}^t\mathbf{C}_2 & \mathbf{0} \end{bmatrix}$$

On pose $(M_1|M_2) = tr({}^tB_1B_2 + {}^tC_1C_2)$.

Démontrer que l'on définit ainsi un produit scalaire sur W'_r .

A.5 Si F et G sont des sous-espaces vectoriels de \mathbb{R}^n , on note

$$\mathscr{K}_{F} = \{A \in \mathbb{M}_{n}(\mathbb{R}) \text{ tq } F \subset \text{Ker } A\} \text{ et } \mathscr{I}_{G} = \{A \in \mathbb{M}_{n}(\mathbb{R}) \text{ tq } \text{Im } A \subset G\}$$

Prouver que \mathcal{K}_F et \mathcal{I}_G sont des sous-espaces vectoriels de $\mathbb{M}_n(\mathbb{R})$, dont on donnera les dimensions.

B - Détermination de la dimension maximale

Dans cette partie, V est un sous-espace vectoriel de $\mathbb{M}_n(\mathbb{R})$ tel que, pour toute matrice $M \in V$, on a $rg(M) \leq r$.

- **B.1** On suppose de plus, dans cette question, que la matrice $J_r = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ appartient à V.
 - a) Soient $A \in \mathbb{M}_{n-r}(\mathbb{R})$ et $B \in \mathbb{M}_{r,n-r}(\mathbb{R})$, telles que $\begin{bmatrix} 0 & B \\ {}^tB & A \end{bmatrix}$ soit dans V.

 On note, pour tout $\lambda \in \mathbb{R}$, $M_{\lambda} = \begin{bmatrix} \lambda I_r & B \\ {}^tB & A \end{bmatrix}$.
 - **b)** Prouver que dim $V \le nr$ (utiliser le résultat de la question A.3).
- **B.2** a) Montrer que l'on a $\dim(V) \le nr$ dans le cas général.

 Indication: On notera r' le rang maximum des matrices de V, et on se souviendra que toute matrice de rang r' est équivalente à la matrice $J_{r'}$.

En utilisant les questions A.1.b et A.2.c, montrer que l'on a $A = {}^{t}BB = 0$ puis que B = 0.

b) On note ici V_L [resp. V_C] l'ensemble des matrices de $\mathbb{M}_n(\mathbb{R})$ dont les n-r dernières lignes [resp. colonnes] sont nulles. Démontrer que V_L et V_C sont des sous-espaces vectoriels de $\mathbb{M}_n(\mathbb{R})$, formés de matrices de rang $\leq r$, et de dimension nr (ainsi, l'inégalité précédente ne peut être améliorée).

C - Étude des sous-espaces de dimension maximale

C.1 Pour toute matrice $A \in M_r(\mathbb{R})$, on note \widetilde{A} sa matrice complémentaire. On rappelle la relation

$$A\widetilde{A} = \widetilde{A}A = (\det A)I_r$$

a) Soit $A \in M_r(\mathbb{R})$ donnée. Démontrer qu'il existe r matrices de $M_r(\mathbb{R})$, $U_0, ..., U_{r-1}$, telles que l'on ait, pour tout $x \in \mathbb{R}$

$$\widetilde{xI_r - A} = \sum_{k=0}^{r-1} x^k U_k$$

- **b**) On note, pour tout $x \in \mathbb{R}$, $P_A(x) = \det(xI_r A)$. Démontrer que P_A est une fonction polynomiale de x, dont le terme dominant est x^r .
- c) En déduire que $U_{r-1} = I_r$, et exprimer, lorsque c'est possible (on précisera), $(xI_r A)^{-1}$ en fonction des U_k .
- **d)** Soient B, C \in M_{r,n-r}(\mathbb{R}), D \in M_{n-r,n-r}(\mathbb{R}), et, pour tout $\lambda \in \mathbb{R}$, M_{$\lambda = \begin{bmatrix} \lambda I_r A & B \\ {}^tC & D \end{bmatrix}$. À l'aide des questions précédentes et de la question A.2.c, démontrer que, si M_{$\lambda = 0$} est de rang $\leq r$ pour tout λ , alors D = 0 et ${}^tCB = 0$.}

Dans toute la suite, V désigne un sous-espace vectoriel de $\mathbb{M}_n(\mathbb{R})$ tel que, pour toute matrice $M \in V$, on a $rg(M) \leq r$ et tel que $\dim V = nr$.

C.2 On suppose de plus, dans cette question, que la matrice $J_r = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$ appartient à V.

a) Montrer que tout élément M de V est de la forme

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ {}^{t}\mathbf{C} & \mathbf{0} \end{bmatrix} \quad \text{avec } \mathbf{A} \in \mathbb{M}_{r}(\mathbb{R}), \ \mathbf{B}, \mathbf{C} \in \mathbb{M}_{r,n-r}(\mathbb{R}), \ \text{et } {}^{t}\mathbf{C}\mathbf{B} = \mathbf{0}$$

On notera par la suite \mathscr{W} le sous-espace de W'_r formé de l'ensemble des matrices $\begin{bmatrix} 0 & B \\ {}^tC & 0 \end{bmatrix}$ lorsque la matrice M ci-dessus décrit V.

b) On considère le produit scalaire défini sur W'_r à la question A.4.b.

Montrer que, pour tout $M \in \mathcal{W}$, $\langle M|^t M \rangle = 0$.

En déduire que, pour tout couple $(M_1,M_2)\in \mathcal{W}^2$, $\langle M_1|^tM_2\rangle=0$ puis que $\dim \mathcal{W}\leqslant r(n-r)$.

c) Démontrer que l'application de V dans $M_r(\mathbb{R}) \times W$ définie par :

$$\begin{bmatrix} A & B \\ {}^tC & 0 \end{bmatrix} \longmapsto \left(A, \begin{bmatrix} 0 & B \\ {}^tC & 0 \end{bmatrix} \right)$$

est un isomorphisme.

- **d)** Prouver que, si U et V sont deux éléments non nuls de $\mathbb{M}_{r,1}(\mathbb{R})$, il existe une matrice $A \in \mathbb{M}_r(\mathbb{R})$ telle que la matrice (d'ordre r+1) $\begin{bmatrix} A & V \\ {}^tU & 0 \end{bmatrix}$ soit inversible (utiliser la question A.2.c).
- e) Déduire de ce qui précède que, si $M = \begin{bmatrix} A & B \\ {}^tC & 0 \end{bmatrix}$ appartient à V, alors B = 0 ou C = 0.
- f) Prouver enfin que, soit B=0 pour tout élément de V, soit C=0 pour tout élément de V. En déduire que $V=V_L$ ou $V=V_C$ (cf. question B.2.b).
- **C.3** On traite maintenant le cas général, c'est-à-dire qu'on désigne ici par V un sous-espace vectoriel de $\mathbb{M}_n(\mathbb{R})$ tel que, pour toute matrice $M \in V$, on a $rg(M) \leq r$ et tel que dimV = nr.
 - a) Prouver que V possède au moins une matrice de rang r.
 - **b)** Prouver que V est, soit de la forme \mathscr{K}_F , soit de la forme \mathscr{I}_G (cf. question A.5).

