PROBLÈME : BANQUE PT 2015

I. PARTIE I

On considère l'espace vectoriel \mathbb{R}^4 . On note (e_1, e_2, e_3, e_4) la base canonique de \mathbb{R}^4 . On considère la matrice $A \in \mathcal{M}_4(\mathbb{R})$ définie par

$$A = \begin{pmatrix} -7 & -16 & 7 & -4 \\ 9 & -3 & -4 & -7 \\ 7 & -4 & -7 & -16 \\ -4 & -7 & 9 & -3 \end{pmatrix}.$$

On note f l'endomorphisme de \mathbb{R}^4 dont la matrice dans la base canonique est A.

- **1. a)** Calculer $f(e_1), f^2(e_1)$.
 - **b)** Montrer que la famille $(e_1, f(e_1), f^2(e_1))$ est liée.
- 2. Montrer que même que la famille $(e_2, f(e_2), f^2(e_2))$ est liée.
- **3.** Montrer que la famille $\mathcal{B} = (e_1, f(e_1), e_2, f(e_2))$ forme une base de \mathbb{R}^4 .
- **4.** En déduire que pour tout $x \in \mathbb{R}^4$, $f^2(x) + 10f(x) + 100x = 0$.
- 5. Écrire la matrice de f dans la base \mathcal{B}
- **6.** La matrice A est-elle diagonalisable?

II. PARTIE II

On se place dans l'espace vectoriel \mathbb{R}^d et on considère un endomorphisme f de \mathbb{R}^d . Soit x un vecteur non nul de \mathbb{R}^d . On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par récurrence

$$\begin{cases} x_0 = x \\ \forall n \geqslant 0 & x_{n+1} = f(x_n) \end{cases}$$

et on note $E_x = \text{Vect}(x_n, n \in \mathbb{N})$.

- 1. Montrer que E_x est stable par f.
- **2.** Soit F un sous-espace vectoriel de \mathbb{R}^d contenant x et stable par f. Montrer que $E_x \subset F$.
- **3.** Soit p le plus grand entier tel que $(x_0, x_1, \dots, x_{p-1})$ soit une famille libre.
 - a) Justifier l'existence d'un tel entier p.
 - **b)** Montrer qu'il existe des réels $a_0, a_1, \ldots, a_{p-1}$ tels que

$$x_p = \sum_{i=0}^{p-1} a_i x_i.$$

- c) On note $E'_x = \text{Vect}(x_0, \dots, x_{p-1})$. Montrer que E'_x est stable par f.
- d) En déduire que $E_x=E_x'$ et que la famille $\mathcal{B}_p=(x_0,\ldots,x_{p-1})$ est une base de E_x .
- **4.** On note \hat{f} l'endomorphisme de E_x obtenu comme restriction de f à E_x . Donner la matrice de \hat{f} dans la base \mathcal{B}_p .
- **5.** Montrer que la famille $(\mathrm{Id}, \hat{f}, \hat{f}^2, \dots, \hat{f}^{p-1})$ est une famille libre de $\mathcal{L}(E_x)$.
- **6. a)** Montrer que pour tout k < p,

$$\hat{f}^p(x_k) = a_0 x_k + a_1 \hat{f}(x_k) + \dots + a_{p-1} \hat{f}^{p-1}(x_k).$$

b) En déduire que l'on a

$$\hat{f}^p - a_{p-1}\hat{f}^{p-1} - \dots - a_0 \text{Id} = 0.$$

III. PARTIE III

Soit E un espace vectoriel sur \mathbb{R} de dimension finie et f un endomorphisme de E.

On note λ_i $(1 \le i \le p)$ les valeurs propres réelles deux à deux distinctes de f, et E_i les sous-espaces propres associés. On suppose que f est diagonalisable.

- **1.** Soit $x \in E$.
 - a) Montrer qu'il existe des vecteurs $x_i \in E_i$ tels que

$$x = \sum_{i=1}^{p} x_i.$$

Cette décomposition est-elle unique?

- b) Notons q le nombre de vecteurs x_i non nuls dans la décomposition précédente et supposons pour simplifier que ce sont les q premiers. Montrer que (x_1, \ldots, x_q) forme une famille libre.
- c) Exprimer $f^k(x)$ pour $1 \le k \le q-1$ en fonction des $(x_i, 1 \le i \le q)$.
- d) Supposons qu'il existe des réels $\alpha_1, \alpha_2, \dots, \alpha_q$ tels que

$$\alpha_1 x + \alpha_2 f(x) + \dots + \alpha_q f^{q-1}(x) = 0.$$

Montrer que le polynôme

$$P(X) = \alpha_1 + \alpha_2 X + \dots + \alpha_q X^{q-1}$$

admet $\lambda_1, \ldots, \lambda_q$ comme racines.

- e) Montrer que la famille $(x, f(x), \dots, f^{q-1}(x))$ est libre.
- **f)** Montrer que $E_x = \text{Vect}(x, f(x), \dots, f^{q-1}(x))$ puis que $E_x = \text{Vect}(x_1, \dots, x_p)$.
- **2.** Soit F un sous-espace stable par f. On note $F_i = F \cap E_i$. Soit $x \in F$. On décompose x comme précédemment

$$x = \sum_{i=1}^{p} x_i$$

avec $x_i \in E_i$.

Déduire de la question précédente que $x_i \in F_i$.

3. On suppose ici que $E=\mathbb{R}^3$ et que la matrice de f dans la base canonique est donnée par :

$$B = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

- a) L'endomorphisme f est-il diagonalisable?
- b) Déterminer les sous-espaces propres de f.
- c) Déterminer les sous-espaces stables par f.