DS n°7 (le 16/02/2013)

Notations.

Pour tout nombre réel x tel que l'intégrale généralisée $\int_0^{+\infty} \frac{1-\cos(t)}{t^2} e^{-xt} dt$ converge, on note $\varphi(x)$ la valeur de cette intégrale.

Pour tout entier naturel non nul m tel que l'intégrale généralisée $\int_0^{+\infty} \frac{(\sin t)^m}{t} dt$ converge, on désigne par J_m sa valeur.

Objectifs.

L'objet de ce problème est d'étudier l'existence et un procédé de calcul éventuel de J_m . La partie I est consacrée à l'étude de la fonction φ pour obtenir un résultat qui concerne J_1 .

L'étude de l'existence de \mathbf{J}_m fait partie de la partie II.

La partie III voit la mise en oeuvre d'un procédé de calcul des intégrales J_m (lorsqu'elles convergent).

1 Étude de la fonction φ .

On désigne par d (respectivement δ) la fonction définie sur $[0,+\infty[$ par $:d(t)=t-1+\cos(t)$ (respectivement $\delta(t)=\frac{t^2}{2}-1+\cos(t)$).

I.1. Étude des fonctions d et δ .

- I.1.1 Étudier la fonction d; en déduire qu'il existe un nombre réel α tel que, pour tout nombre réel t strictement positif, on ait l'inégalité : $0 \le \frac{1 \cos(t)}{t} \le \alpha$.
- I.1.2 Étudier la fonction δ ; en déduire qu'il existe un nombre réel β tel que, pour tout nombre réel t strictement positif, on ait l'inégalité : $0 \leq \frac{1 \cos(t)}{t^2} \leq \beta$.
- I.2. Existence de la fonction φ sur $[0,+\infty[$.

Établir la convergence de l'intégrale généralisée $\int_0^{+\infty} \frac{1-\cos(t)}{t^2} dt$. En déduire que $\varphi(x)$ existe pour tout x appartenant à $[0,+\infty[$.

I.3. Limite de la fonction φ en $+\infty$.

- I.3.1 Préciser le signe de $\varphi(x_1) \varphi(x_2)$, pour $0 \le x_1 \le x_2$. En déduire que la fonction φ admet une limite finie λ en $+\infty$.
- I.3.2 Déterminer la valeur de λ (on pourra utiliser I.1.2).

I.4. Caractère \mathscr{C}^k de la fonction φ .

- I.4.1 Montrer que la fonction φ est continue sur $[0, +\infty[$.
- I.4.2 Montrer que la fonction φ est de classe \mathscr{C}^1 sur $]0,+\infty[$ (on pourra utiliser I.1.1).
- I.4.3 Montrer que la fonction φ' admet une limite finie (que l'on précisera) en $+\infty$.
- I.4.4 Montrer que la fonction φ est de classe \mathscr{C}^2 sur $]0,+\infty[$.
- I.4.5 Expliciter $\varphi''(x)$ pour $x \in]0, +\infty[$.
- I.4.6 Expliciter $\varphi'(x)$ pour $x \in]0, +\infty[$. La fonction φ est-elle dérivable en 0 ?

I.5. Expression explicite de la fonction $\varphi(x)$.

- I.5.1 Déterminer la limite de $x \ln \left(\frac{x^2}{x^2 + 1} \right)$ lorsque x tend vers $+\infty$.
- I.5.2 Expliciter une primitive de la fonction $x \mapsto \ln(1+x^2)$ (on pourra utiliser une intégration par parties).
- I.5.3 Expliciter $\varphi(x)$ pour x appartenant à $]0,+\infty[$.
- I.5.4 Déterminer $\varphi(0)$.

2 Étude de l'existence de J_m .

II.1. Étude de $\int_0^{\frac{\pi}{2}} \frac{(\sin t)^m}{t} dt.$

Justifier la convergence de l'intégrale généralisée $\int_0^{\frac{n}{2}} \frac{(\sin t)^m}{t} dt$ pour tout entier naturel non nul m.

Pour tout entier relatif k tel que l'intégrale généralisée $\int_{\frac{\pi}{2}}^{+\infty} \frac{\mathrm{e}^{\mathrm{i}kt}}{t} \, \mathrm{d}t$ converge, on note I_k la valeur de cette intégrale.

II.2. Étude de J₁.

Justifier l'existence de J_1 et établir une relation entre J_1 et $\varphi(0)$ (on pourra utiliser une intégration par parties, en remarquant que $(1-\cos)'=\sin$).

II.3. Étude de l'existence de I_k .

Préciser la nature de l'intégrale généralisée I_k selon la valeur de l'entier relatif k (on pourra utiliser une intégration par parties).

II.4. Étude de la nature de J_m .

Pour tout x appartenant à $\left[\frac{\pi}{2}, +\infty\right[$ et tout entier relatif k, on note : $I_k(x) = \int_{\frac{\pi}{2}}^x \frac{\mathrm{e}^{\mathrm{i}kt}}{t} \mathrm{d}t$.

- II.4.1 Exprimer, pour tout entier naturel non nul m et pour tout nombre réel x appartenant à $\left[\frac{\pi}{2}, +\infty\right[$, l'intégrale $\int_{\frac{\pi}{2}}^{x} \frac{(\sin t)^m}{t} \, \mathrm{d}t$ à l'aide des intégrales $\mathrm{I}_k(x)$.
- II.4.2 En déduire l'existence de J_{2p+1} pour tout entier naturel p.
- II.4.3 Quelle est la nature de l'intégrale généralisée $\int_0^{+\infty} \frac{(\sin t)^{2p}}{t} dt$ pour p entier naturel non nul?

Calcul de J_{2p+1} . 3

Un développement de Fourier. III.1.

On désigne par x un nombre réel fixé, non multiple entier de π , par h_x la fonction définie sur \mathbb{R} , aleurs réelles, 2π -périodique et vérifiant : $h_x(t) = \cos\left(\frac{x}{\pi}t\right)$ pour tout $t \in]-\pi,\pi]$. tout $t \in]-\pi,\pi]$.

III.1.1 Calculer les coefficients de Fourier réels $a_n(h_x)$ et $b_n(h_x)$ de la fonction h_x . On rappelle que pour tout entier noture n:

$$a_n(h_x) = \frac{1}{\pi} \int_{-\pi}^{\pi} h_x(t) \cos(nt) dt \quad \text{et} \quad b_n(h_x) = \int_{\pi}^{\pi} h_x(t) \sin(nt) dt$$

 $a_n(h_x) = \frac{1}{\pi} \int_{-\pi}^{\pi} h_x(t) \cos(nt) dt \quad \text{et} \quad b_n(h_x) = \int_{\pi}^{\pi} h_x(t) \sin(nt) dt$ III.1.2 Justifier la convergence de la série $\sum_{n \geqslant 1} (-1)^n \frac{2x \sin(x)}{x^2 - n^2 \pi^2} \quad \text{et déduite de III.1.1 la}$

valeur de la somme
$$\frac{\sin(x)}{x} + \sum_{n=1}^{+\infty} (-1)^n \frac{2x \sin(x)}{x^2 - n^2 \pi^2}.$$

On admettra pour la suite le résultat suivant :

$$\forall x \notin \pi \mathbb{Z}$$
, $\frac{\sin(x)}{x} + \sum_{n=1}^{+\infty} (-1)^n \frac{2x \sin(x)}{x^2 - n^2 \pi^2} = 1$.

III.2. Étude d'un procédé de calcul.

On désigne par f une fonction définie et continue sur [-1,1] à valeur réelles; on suppose de plus que f est impaire et dérivable en 0.

Pour tout entier naturel non nul n, on pose :

$$\bullet \quad \gamma_n = \int_{\frac{\pi}{2} + (n-1)\pi}^{\frac{\pi}{2} + n\pi} \frac{f(\sin t)}{t} dt,$$

- u_n l'application de $\left[0, \frac{\pi}{2}\right]$ dans \mathbb{R} définie par $u_n(t) = (-1)^n \frac{2t f(\sin t)}{t^2 n^2 \pi^2}$
- $\bullet \quad \mu_n = \int_0^{\frac{n}{2}} u_n(t) \, \mathrm{d}t.$
- III.2.1 Déterminer la limite de γ_n lorsque n tend vers $+\infty$.
- III.2.2 Établir (pour tout entier naturel non nul n) une relation entre γ_n et μ_n .
- III.2.3 Établir la convergence, pour tout t appartenant à $\left[0,\frac{\pi}{2}\right]$ de la série $\sum_{i=1}^{n}u_{n}(t)$.

Désormais on note
$$S(t) = \sum_{n=1}^{+\infty} u_n(t)$$
 pour tout t appartenant à $\left[0, \frac{\pi}{2}\right]$.

III.2.4 Montrer que la fonction S est continue sur $\left[0,\frac{\pi}{2}\right]$.

III.2.5 justifier la convergence de la série $\sum_{n=1}^{\infty} \gamma_n$ et l'égalité $\int_0^{\frac{n}{2}} S(t) dt = \sum_{n=1}^{+\infty} \gamma_n$.

III.2.6 Justifier la convergence de l'intégrale généralisée $\int_{\frac{\pi}{2}}^{+\infty} \frac{f(\sin t)}{t} \, \mathrm{d}t \text{ et l'égalité}$ $\int_{0}^{\frac{\pi}{2}} \mathrm{S}(t) \, \mathrm{d}t = \int_{\frac{\pi}{2}}^{+\infty} \frac{f(\sin t)}{t} \, \mathrm{d}t.$

- III.2.7 Justifier la convergence des intégrales généralisées $\int_0^{\frac{\pi}{2}} \frac{f(\sin t)}{\sin t} dt$ et $\int_0^{\frac{\pi}{2}} \frac{f(\sin t)}{t} dt$.
- III.2.8 Exprimer la différence $\int_0^{+\infty} \frac{f(\sin(t))}{t} \, \mathrm{d}t \int_0^{\pi/2} \frac{f(\sin(t))}{\sin(t)} \, \mathrm{d}t \, \, \mathrm{à} \, \, l' \mathrm{aide} \, \, \mathrm{de} \, \, l' \mathrm{intégrale}$ d'une fonction continue sur le segment $\left[0,\frac{\pi}{2}\right]$.

III.3. Application au calcul de J_{2p+1} .

- III.3.1 En utilisant les résultats obtenus en III.1 et III.2 retrouver la valeur de J_1 (déjà obtenue en II.2).
- III.3.2 Calculer J₃.
- III.3.3 Plus généralement, expliciter J_{2p+1} pour tout entier naturel p.

